IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924002617.html
   My bibliography  Save this article

HHL algorithm with mapping function and enhanced sampling for model predictive control in microgrids

Author

Listed:
  • Jing, Hang
  • Li, Yan
  • Brandsema, Matthew J.
  • Chen, Yousu
  • Yue, Meng

Abstract

This paper presents a refined quantum Harrow Hassidim Lloyd (HHL) algorithm for microgrid control. The first novelty of the developed method is that a mapping shift function enables the original HHL algorithm to handle general linear equations with non-singular and indefinite matrix. Second, a method of Matrix Extension for Amplifying Sampling Probabilities of Intended Solution (ME-ASPI) is proposed to design the reformulated linear algebraic equations, allowing for improved sampling efficiency of the quantum tomography in the refined HHL algorithm. Then, we applied the method to solve the model predictive control (MPC) problem in nonlinear dynamical microgrids. Specifically, with the ME-ASPI method, the refined HHL algorithm can effectively obtain the intended partial optimal control inputs for MPC. The optimization of quadratic programming problem in each time step of MPC is transformed into a linear system problem, which is addressed by the proposed quantum solver through using only partial information, with the time complexity improved from O(N2.37286) classically to O(N2logN×plogp) in quantum. Numerical examples have validated the effectiveness of the refined HHL algorithm with the proposed mapping function and the ME-ASPI method. By leveraging quantum properties, the proposed method provides a hybrid quantum–classical framework for microgrid control. This generic method can also potentially tackle many other challenges in analyzing and controlling general complex engineered systems.

Suggested Citation

  • Jing, Hang & Li, Yan & Brandsema, Matthew J. & Chen, Yousu & Yue, Meng, 2024. "HHL algorithm with mapping function and enhanced sampling for model predictive control in microgrids," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002617
    DOI: 10.1016/j.apenergy.2024.122878
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122878?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.