IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/18190.html

Dynamic Programming on a Quantum Annealer: Solving the RBC Model

Author

Listed:
  • Fernández-Villaverde, Jesús
  • Hull, Isaiah

Abstract

We introduce a novel approach to solving dynamic programming problems, such as those in many economic models, on a quantum annealer, a specialized device that performs combinatorial optimization. Quantum annealers attempt to solve an NP-hard problem by starting in a quantum superposition of all states and generating candidate global solutions in milliseconds, irrespective of problem size. Using existing quantum hardware, we achieve an order-of-magnitude speed-up in solving the real business cycle model over benchmarks in the literature. We also provide a detailed introduction to quantum annealing and discuss its potential use for more challenging economic problems.

Suggested Citation

  • Fernández-Villaverde, Jesús & Hull, Isaiah, 2023. "Dynamic Programming on a Quantum Annealer: Solving the RBC Model," CEPR Discussion Papers 18190, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:18190
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP18190
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Raphael Auer & Angela Dupont & Leonardo Gambacorta & Joon Suk Park & Koji Takahashi & Andras Valko, 2024. "Quantum computing and the financial system: opportunities and risks," BIS Papers, Bank for International Settlements, number 149, May.
    3. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.

    More about this item

    Keywords

    ;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:18190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.