IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs0306261923015350.html
   My bibliography  Save this article

Scaled-up aqueous redox flow battery using anthraquinone negalyte and vanadium posilyte with inorganic additive

Author

Listed:
  • Park, Gyunho
  • Jeong, Hayoung
  • Lee, Wonmi
  • Han, Jeong Woo
  • Chang, Duck Rye
  • Kwon, Yongchai

Abstract

In this study, one kilowatt aqueous redox flow battery (ARFB) using anthraquinone-2,7-disulfonic acid (2,7-AQDS) and vanadium oxide sulfate (VOSO4) as active materials for negalyte (negative electrolyte) and posilyte (positive electrolyte) is successfully accomplished. Then, manganese sulfate (MnSO4) is further included in negalyte to increase reactivity of active materials and to suppress their crossover by controlling their osmotic pressure. This binary effects of MnSO4 are predicted by density functional theory and reduction in concentration gap. The decrease in energy band gap of 2,7-AQDS with MnSO4 facilitated electron transfer rate. Anodic and cathodic diffusion coefficient and reaction rate constant are also improved. More specifically, with adoption of MnSO4 additive, energy efficiency and capacity retention rate of ARFB single cells operated with MnSO4 additive are improved from 79.1 to 83.9% at the current density of 40 mA cm−2 and from 82 to 88% at the current density of 80 mA cm−2 after 100 cycles. Based on that, ARFB stack using 2,7-AQDS and VOSO4 with MnSO4 additive is prepared and this ARFB stack exhibits a high power of 1.15 kW.

Suggested Citation

  • Park, Gyunho & Jeong, Hayoung & Lee, Wonmi & Han, Jeong Woo & Chang, Duck Rye & Kwon, Yongchai, 2024. "Scaled-up aqueous redox flow battery using anthraquinone negalyte and vanadium posilyte with inorganic additive," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015350
    DOI: 10.1016/j.apenergy.2023.122171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.