IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v342y2023ics0306261923005007.html
   My bibliography  Save this article

The pinhole effect on proton exchange membrane fuel cell (PEMFC) current density distribution and temperature distribution

Author

Listed:
  • Ding, Feng
  • Zou, Tingting
  • Wei, Tao
  • Chen, Lei
  • Qin, Xiaoping
  • Shao, Zhigang
  • Yang, Jianjun

Abstract

The proton exchange membrane (PEM) is a critical portion of a proton exchange membrane fuel cell (PEMFC). However, it is strongly influenced by pinhole defects owing to degradation during its operation or manufacture. Such defects may accelerate chemical polymer decomposition, eventually causing fuel cell failure and other safety issues. Thus, it is necessary to detect and characterize pinhole degradation while determining the effect of pinhole on electrochemical behavior and fuel cell performance. Herein, pinholes of different sizes (10 and 100 µm) were fabricated on a 50-cm2 catalyst-coated membrane (CCM) and characterized using commercial current scan shunt (CSS) S++ Simulation Services (Hephas Energy) to investigate the effects of pinhole size on current density and temperature distributions of the PEMFC. Our analyses show that hydrogen crossover from the anode to the cathode through a pinhole can cause hydrogen diffusion and a hydrogen oxidation reaction (HOR) on the cathode electrode surface under certain conditions. Consequently, local reverse currents and hot spots are detected around the pinhole position under open-circuit voltage (OCV) and the corresponding current and temperature distribution trends are uniform. Conversely, the reverse current immediately disappeared from the current distribution map because water exists under operation conditions, resulting in membrane swelling and pinhole sealing. Thus, hydrogen crossover decreased and local reverse currents reappeared as a result of anode overpressure during fuel cell operation. The local reverse current becomes weaker when using the same-sized pinhole under the same anode overpressure because the overall current density increases. Furthermore, owing to the presence of water, the capillary force for the 100-µm pinhole was higher than that for the 10-µm pinhole, indicating that more anode overpressure is required to generate a local reverse current. Thus, the position and size of the pinhole can be effectively detected using in situ characterization.

Suggested Citation

  • Ding, Feng & Zou, Tingting & Wei, Tao & Chen, Lei & Qin, Xiaoping & Shao, Zhigang & Yang, Jianjun, 2023. "The pinhole effect on proton exchange membrane fuel cell (PEMFC) current density distribution and temperature distribution," Applied Energy, Elsevier, vol. 342(C).
  • Handle: RePEc:eee:appene:v:342:y:2023:i:c:s0306261923005007
    DOI: 10.1016/j.apenergy.2023.121136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923005007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Dengcheng & Lin, Rui & Feng, Bowen & Han, Lihang & Zhang, Yu & Ni, Meng & Wu, Sai, 2019. "Localised electrochemical impedance spectroscopy investigation of polymer electrolyte membrane fuel cells using Print circuit board based interference-free system," Applied Energy, Elsevier, vol. 254(C).
    2. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    3. Miao, Tianwei & Tongsh, Chasen & Wang, Jianan & Cheng, Peng & Liang, Jinqiao & Wang, Zixuan & Chen, Wenmiao & Zhang, Chao & Xi, Fuqiang & Du, Qing & Wang, Bowen & Bai, Fuqiang & Jiao, Kui, 2022. "Current density and temperature distribution measurement and homogeneity analysis for a large-area proton exchange membrane fuel cell," Energy, Elsevier, vol. 239(PA).
    4. Chakraborty, Uttara, 2016. "Fuel crossover and internal current in proton exchange membrane fuel cell modeling," Applied Energy, Elsevier, vol. 163(C), pages 60-62.
    5. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    6. Yin, Cong & Cao, Jishen & Tang, Qilin & Su, Yanghuai & Wang, Renkang & Li, Kai & Tang, Hao, 2022. "Study of internal performance of commercial-size fuel cell stack with 3D multi-physical model and high resolution current mapping," Applied Energy, Elsevier, vol. 323(C).
    7. Shan, Jing & Gazdzicki, Pawel & Lin, Rui & Schulze, Mathias & Friedrich, K. Andreas, 2017. "Local resolved investigation of hydrogen crossover in polymer electrolyte fuel cell," Energy, Elsevier, vol. 128(C), pages 357-365.
    8. Garcia-Sanchez, D. & Morawietz, T. & da Rocha, P. Gama & Hiesgen, R. & Gazdzicki, P. & Friedrich, K.A., 2020. "Local impact of load cycling on degradation in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 259(C).
    9. Jung, Aeri & Oh, Jongkil & Han, Kookil & Kim, Min Soo, 2016. "An experimental study on the hydrogen crossover in polymer electrolyte membrane fuel cells for various current densities," Applied Energy, Elsevier, vol. 175(C), pages 212-217.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Cong & Cao, Jishen & Tang, Qilin & Su, Yanghuai & Wang, Renkang & Li, Kai & Tang, Hao, 2022. "Study of internal performance of commercial-size fuel cell stack with 3D multi-physical model and high resolution current mapping," Applied Energy, Elsevier, vol. 323(C).
    2. Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
    3. Hu, Zunyan & Xu, Liangfei & Huang, Yiyuan & Li, Jianqiu & Ouyang, Minggao & Du, Xiaoli & Jiang, Hongliang, 2018. "Comprehensive analysis of galvanostatic charge method for fuel cell degradation diagnosis," Applied Energy, Elsevier, vol. 212(C), pages 1321-1332.
    4. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    5. Chu, Tiankuo & Xie, Meng & Yu, Yue & Wang, Baoyun & Yang, Daijun & Li, Bing & Ming, Pingwen & Zhang, Cunman, 2022. "Experimental study of the influence of dynamic load cycle and operating parameters on the durability of PEMFC," Energy, Elsevier, vol. 239(PD).
    6. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    7. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    8. Chu, Tiankuo & Tang, Qianwen & Wang, Qinpu & Wang, Yanbo & Du, Hong & Guo, YuQing & Li, Bing & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2023. "Experimental study on the effect of flow channel parameters on the durability of PEMFC stack and analysis of hydrogen crossover mechanism," Energy, Elsevier, vol. 264(C).
    9. Pei, Pucheng & Jia, Xiaoning & Xu, Huachi & Li, Pengcheng & Wu, Ziyao & Li, Yuehua & Ren, Peng & Chen, Dongfang & Huang, Shangwei, 2018. "The recovery mechanism of proton exchange membrane fuel cell in micro-current operation," Applied Energy, Elsevier, vol. 226(C), pages 1-9.
    10. Pahon, E. & Yousfi Steiner, N. & Jemei, S. & Hissel, D. & Moçoteguy, P., 2016. "A signal-based method for fast PEMFC diagnosis," Applied Energy, Elsevier, vol. 165(C), pages 748-758.
    11. Maximilian Schmitz & Matthias Bahr & Sönke Gößling & Stefan Pischinger, 2023. "Analysis of Ice Formation during Start-Up of PEM Fuel Cells at Subzero Temperatures Using Experimental and Simulative Methods," Energies, MDPI, vol. 16(18), pages 1-26, September.
    12. Miao, Tianwei & Tongsh, Chasen & Wang, Jianan & Cheng, Peng & Liang, Jinqiao & Wang, Zixuan & Chen, Wenmiao & Zhang, Chao & Xi, Fuqiang & Du, Qing & Wang, Bowen & Bai, Fuqiang & Jiao, Kui, 2022. "Current density and temperature distribution measurement and homogeneity analysis for a large-area proton exchange membrane fuel cell," Energy, Elsevier, vol. 239(PA).
    13. Zhu, Li & Chen, Junghui, 2018. "Prognostics of PEM fuel cells based on Gaussian process state space models," Energy, Elsevier, vol. 149(C), pages 63-73.
    14. Indro Biswas & Daniel G. Sánchez & Mathias Schulze & Jens Mitzel & Benjamin Kimmel & Aldo Saul Gago & Pawel Gazdzicki & K. Andreas Friedrich, 2020. "Advancement of Segmented Cell Technology in Low Temperature Hydrogen Technologies," Energies, MDPI, vol. 13(9), pages 1-22, May.
    15. Oh, Hwanyeong & Park, Jaeman & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2015. "Effects of pore size gradient in the substrate of a gas diffusion layer on the performance of a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 149(C), pages 186-193.
    16. Xinjie Xu & Kai Li & Zhenjie Liao & Jishen Cao & Renkang Wang, 2022. "A Closed-Loop Water Management Methodology for PEM Fuel Cell System Based on Impedance Information Feedback," Energies, MDPI, vol. 15(20), pages 1-16, October.
    17. Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
    18. Chen, Huicui & Pei, Pucheng & Song, Mancun, 2015. "Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells," Applied Energy, Elsevier, vol. 142(C), pages 154-163.
    19. Hua, Zhiguang & Zheng, Zhixue & Péra, Marie-Cécile & Gao, Fei, 2020. "Remaining useful life prediction of PEMFC systems based on the multi-input echo state network," Applied Energy, Elsevier, vol. 265(C).
    20. Jouin, Marine & Bressel, Mathieu & Morando, Simon & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine & Jemei, Samir & Hilairet, Mickael & Ould Bouamama, Belkacem, 2016. "Estimating the end-of-life of PEM fuel cells: Guidelines and metrics," Applied Energy, Elsevier, vol. 177(C), pages 87-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:342:y:2023:i:c:s0306261923005007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.