IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v341y2023ics0306261923004403.html
   My bibliography  Save this article

Modeling and optimization of carbon-negative NGCC plant enabled by modular direct air capture

Author

Listed:
  • Cheng, Pengfei
  • Thierry, David M.
  • Hendrix, Howard
  • Dombrowski, Katherine D.
  • Sachde, Darshan J.
  • Realff, Matthew J.
  • Scott, Joseph K.

Abstract

Natural gas combined cycle (NGCC) plants are the most prevalent source of electricity in the United States and are expected to continue playing a key role in the future energy market. However, they are also one of the main sources of CO2 emissions in the power market. Recently, the authors proposed a retrofit design for an existing NGCC to allow power generation with negative CO2 emissions by utilizing both post-combustion carbon capture (PCC) and direct air capture (DAC). The DAC unit captures CO2 directly from the atmosphere using low-grade heat from the NGCC via a novel heat integration scheme. The heat integration scheme and modular DAC design introduce significant flexibility, allowing the system to focus on either power generation or CO2 capture in response to electricity price changes. However, this creates a complex trade-off between the cost of DAC capacity and the enhanced operational flexibility it provides. In this work, we model the proposed retrofit systematically and co-optimize the design and operation of the system for an entire year under different electricity price signals and CO2 prices. The DAC operations are modeled with a novel formulation to account for the sorbent dynamics in its temperature swing cycles. The solutions for the resulting large-scale mixed-integer linear program show that a large DAC unit is preferred in most situations. The extra flexibility leads to longer dispatch time and higher profits compared with the base NGCC.

Suggested Citation

  • Cheng, Pengfei & Thierry, David M. & Hendrix, Howard & Dombrowski, Katherine D. & Sachde, Darshan J. & Realff, Matthew J. & Scott, Joseph K., 2023. "Modeling and optimization of carbon-negative NGCC plant enabled by modular direct air capture," Applied Energy, Elsevier, vol. 341(C).
  • Handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004403
    DOI: 10.1016/j.apenergy.2023.121076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923004403
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lindqvist, Karl & Jordal, Kristin & Haugen, Geir & Hoff, Karl Anders & Anantharaman, Rahul, 2014. "Integration aspects of reactive absorption for post-combustion CO2 capture from NGCC (natural gas combined cycle) power plants," Energy, Elsevier, vol. 78(C), pages 758-767.
    2. Ondeck, Abigail & Edgar, Thomas F. & Baldea, Michael, 2017. "A multi-scale framework for simultaneous optimization of the design and operating strategy of residential CHP systems," Applied Energy, Elsevier, vol. 205(C), pages 1495-1511.
    3. Wu, Xiao & Wang, Meihong & Liao, Peizhi & Shen, Jiong & Li, Yiguo, 2020. "Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation," Applied Energy, Elsevier, vol. 257(C).
    4. Giulia Realmonte & Laurent Drouet & Ajay Gambhir & James Glynn & Adam Hawkes & Alexandre C. Köberle & Massimo Tavoni, 2019. "An inter-model assessment of the role of direct air capture in deep mitigation pathways," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    5. Brouwer, Anne Sjoerd & van den Broek, Machteld & Seebregts, Ad & Faaij, André, 2015. "Operational flexibility and economics of power plants in future low-carbon power systems," Applied Energy, Elsevier, vol. 156(C), pages 107-128.
    6. Azarabadi, Habib & Lackner, Klaus S., 2019. "A sorbent-focused techno-economic analysis of direct air capture," Applied Energy, Elsevier, vol. 250(C), pages 959-975.
    7. Marco Mazzotti & Renato Baciocchi & Michael Desmond & Robert Socolow, 2013. "Direct air capture of CO 2 with chemicals: optimization of a two-loop hydroxide carbonate system using a countercurrent air-liquid contactor," Climatic Change, Springer, vol. 118(1), pages 119-135, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adams, T. & Mac Dowell, N., 2016. "Off-design point modelling of a 420MW CCGT power plant integrated with an amine-based post-combustion CO2 capture and compression process," Applied Energy, Elsevier, vol. 178(C), pages 681-702.
    2. Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).
    3. Sina Hoseinpoori & David Pallarès & Filip Johnsson & Henrik Thunman, 2023. "A comparative exergy-based assessment of direct air capture technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(7), pages 1-20, October.
    4. Garðarsdóttir, Stefanía Ó. & Göransson, Lisa & Normann, Fredrik & Johnsson, Filip, 2018. "Improving the flexibility of coal-fired power generators: Impact on the composition of a cost-optimal electricity system," Applied Energy, Elsevier, vol. 209(C), pages 277-289.
    5. Zhu, Xuancan & Ge, Tianshu & Yang, Fan & Wang, Ruzhu, 2021. "Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Jixuan Wang & Wensheng Liu & Xin Meng & Xiaozhen Liu & Yanfeng Gao & Zuodong Yu & Yakai Bai & Xin Yang, 2020. "Study on the Coupling Effect of a Solar-Coal Unit Thermodynamic System with Carbon Capture," Energies, MDPI, vol. 13(18), pages 1-14, September.
    7. Zhao, Xiaoli & Chen, Haoran & Liu, Suwei & Ye, Xiaomei, 2020. "Economic & environmental effects of priority dispatch of renewable energy considering fluctuating power output of coal-fired units," Renewable Energy, Elsevier, vol. 157(C), pages 695-707.
    8. Ayami Hayashi & Fuminori Sano & Takashi Homma & Keigo Akimoto, 2023. "Mitigating trade-offs between global food access and net-zero emissions: the potential contribution of direct air carbon capture and storage," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    9. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    10. Kruyt, Bert & Lehning, Michael & Kahl, Annelen, 2017. "Potential contributions of wind power to a stable and highly renewable Swiss power supply," Applied Energy, Elsevier, vol. 192(C), pages 1-11.
    11. Zhao, Jun & Fu, Jianxin & Deng, Shuai & Wang, Junyao & Xu, Yaofeng, 2020. "Decoupled thermal-driven absorption-based CO2 capture into heat engine plus carbon pump: A new understanding with the case study," Energy, Elsevier, vol. 210(C).
    12. Mauger, Gedeon & Tauveron, Nicolas & Bentivoglio, Fabrice & Ruby, Alain, 2019. "On the dynamic modeling of Brayton cycle power conversion systems with the CATHARE-3 code," Energy, Elsevier, vol. 168(C), pages 1002-1016.
    13. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    14. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    15. Stinner, Sebastian & Schlösser, Tim & Huchtemann, Kristian & Müller, Dirk & Monti, Antonello, 2017. "Primary energy evaluation of heat pumps considering dynamic boundary conditions in the energy system," Energy, Elsevier, vol. 138(C), pages 60-78.
    16. Carapellucci, Roberto & Giordano, Lorena & Vaccarelli, Maura, 2017. "Application of an amine-based CO2 capture system in retrofitting combined gas-steam power plants," Energy, Elsevier, vol. 118(C), pages 808-826.
    17. Pambour, Kwabena Addo & Cakir Erdener, Burcin & Bolado-Lavin, Ricardo & Dijkema, Gerard P.J., 2017. "SAInt – A novel quasi-dynamic model for assessing security of supply in coupled gas and electricity transmission networks," Applied Energy, Elsevier, vol. 203(C), pages 829-857.
    18. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    19. Aikaterini Papadimitriou & Anastasios Tosios & Eugenia Giannini, 2021. "Techno-Economic Performance Assessment of a Trigeneration System Operating in a Hospital," Energies, MDPI, vol. 14(16), pages 1-21, August.
    20. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.