IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v137y2021ics1364032120309357.html
   My bibliography  Save this article

Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air

Author

Listed:
  • Zhu, Xuancan
  • Ge, Tianshu
  • Yang, Fan
  • Wang, Ruzhu

Abstract

Direct air capture (DAC) is an efficient, negative-carbon-emission technology that enables the capture of distributed emissions and removes location restrictions on capture facilities. However, current DAC demonstration plants are still too costly to be commercialized. In this work, a three-step steam-assisted temperature vacuum-swing adsorption (S-TVSA) cycle based on a packed column was designed for use in DAC systems, and the CO2 and H2O capacities and kinetics of the adsorbents were considered in detail. By operating the steam purge step at reduced pressures, steam at temperatures lower than 100 °C can be supplied by cheap thermal sources. In addition, the adsorption of H2O during the steam purge step can release heat for CO2 regeneration. Parameter sensitivity analysis reveals the trade-off relationship between the performance and energy consumption of DAC system with the S-TVSA cycle. The optimal case with a variational steam purge step operating at 90 °C and 0.3 bar achieves a CO2 productivity of 4.45 mol kg−1 day−1 and an energy requirement of 0.295 MJ mol−1. If the heat energy for the purge steam comes from solar energy or low-grade industrial waste heat, which represents 80.6% of the total energy consumption, the DAC system with S-TVSA cycle will be competitive with post-combustion CO2 capture technologies. Note that the productivity can be increased by up to 280% with only 32.8% of the initial energy consumption by using novel adsorbents with higher capacities and kinetics, potentially making S-TVSA cycles highly efficient for DAC systems.

Suggested Citation

  • Zhu, Xuancan & Ge, Tianshu & Yang, Fan & Wang, Ruzhu, 2021. "Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120309357
    DOI: 10.1016/j.rser.2020.110651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120309357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas M. McDonald & Jarad A. Mason & Xueqian Kong & Eric D. Bloch & David Gygi & Alessandro Dani & Valentina Crocellà & Filippo Giordanino & Samuel O. Odoh & Walter S. Drisdell & Bess Vlaisavljevich , 2015. "Cooperative insertion of CO2 in diamine-appended metal-organic frameworks," Nature, Nature, vol. 519(7543), pages 303-308, March.
    2. Zhu, Xuancan & Shi, Yixiang & Cai, Ningsheng, 2016. "Integrated gasification combined cycle with carbon dioxide capture by elevated temperature pressure swing adsorption," Applied Energy, Elsevier, vol. 176(C), pages 196-208.
    3. Flavien M. Brethomé & Neil J. Williams & Charles A. Seipp & Michelle K. Kidder & Radu Custelcean, 2018. "Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power," Nature Energy, Nature, vol. 3(7), pages 553-559, July.
    4. Genggeng Qi & Liling Fu & Emmanuel P. Giannelis, 2014. "Sponges with covalently tethered amines for high-efficiency carbon capture," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    5. Katherine Bourzac, 2017. "We have the technology," Nature, Nature, vol. 550(7675), pages 66-69, October.
    6. Zhu, Xuancan & Shi, Yixiang & Li, Shuang & Cai, Ningsheng, 2018. "Two-train elevated-temperature pressure swing adsorption for high-purity hydrogen production," Applied Energy, Elsevier, vol. 229(C), pages 1061-1071.
    7. Azarabadi, Habib & Lackner, Klaus S., 2019. "A sorbent-focused techno-economic analysis of direct air capture," Applied Energy, Elsevier, vol. 250(C), pages 959-975.
    8. Dissanayake, Pavani Dulanja & Choi, Seung Wan & Igalavithana, Avanthi Deshani & Yang, Xiao & Tsang, Daniel C.W. & Wang, Chi-Hwa & Kua, Harn Wei & Lee, Ki Bong & Ok, Yong Sik, 2020. "Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    9. Giulia Realmonte & Laurent Drouet & Ajay Gambhir & James Glynn & Adam Hawkes & Alexandre C. Köberle & Massimo Tavoni, 2019. "An inter-model assessment of the role of direct air capture in deep mitigation pathways," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    10. Song, Chunfeng & Liu, Qingling & Ji, Na & Deng, Shuai & Zhao, Jun & Kitamura, Yutaka, 2017. "Natural gas purification by heat pump assisted MEA absorption process," Applied Energy, Elsevier, vol. 204(C), pages 353-361.
    11. Zhao, Ruikai & Liu, Longcheng & Zhao, Li & Deng, Shuai & Li, Shuangjun & Zhang, Yue, 2019. "A comprehensive performance evaluation of temperature swing adsorption for post-combustion carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Y. & Liu, W. & Yong, J.Y. & Zhang, X.J. & Jiang, L., 2023. "Solar-assisted temperature vacuum swing adsorption for direct air capture: Effect of relative humidity," Applied Energy, Elsevier, vol. 348(C).
    2. Thomas Deschamps & Mohamed Kanniche & Laurent Grandjean & Olivier Authier, 2022. "Modeling of Vacuum Temperature Swing Adsorption for Direct Air Capture Using Aspen Adsorption," Clean Technol., MDPI, vol. 4(2), pages 1-18, April.
    3. Yang, Lihua & Wu, Xiao, 2024. "Net-zero carbon configuration approach for direct air carbon capture based integrated energy system considering dynamic characteristics of CO2 adsorption and desorption," Applied Energy, Elsevier, vol. 358(C).
    4. Qiao, Yuanting & Bailey, Josh J. & Huang, Qi & Ke, Xuebin & Wu, Chunfei, 2022. "Potential photo-switching sorbents for CO2 capture – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Ge, Bingyao & Zhang, Man & Hu, Bin & Wu, Di & Zhu, Xuancan & Eicker, Ursula & Wang, Ruzhu, 2024. "Innovative process integrating high temperature heat pump and direct air capture," Applied Energy, Elsevier, vol. 355(C).
    6. Liu, Xuetao & Saren, Sagar & Chen, Haonan & Jeong, Ji Hwan & Li, Minxia & Dang, Chaobin & Miyazaki, Takahiko & Thu, Kyaw, 2024. "Open adsorption system for atmospheric CO2 capture: Scaling and sensitivity analysis," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silviya Boycheva & Ivan Marinov & Denitza Zgureva-Filipova, 2021. "Studies on the CO 2 Capture by Coal Fly Ash Zeolites: Process Design and Simulation," Energies, MDPI, vol. 14(24), pages 1-15, December.
    2. Ünal, Emre & Keeley, Alexander Ryota & Köse, Nezir & Chapman, Andrew & Managi, Shunsuke, 2024. "The nexus between direct air capture technology and CO2 emissions in the transport sector," Applied Energy, Elsevier, vol. 363(C).
    3. Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).
    4. Gao, Wanlin & Zhou, Tuantuan & Gao, Yanshan & Wang, Qiang, 2019. "Enhanced water gas shift processes for carbon dioxide capture and hydrogen production," Applied Energy, Elsevier, vol. 254(C).
    5. Subraveti, Sai Gokul & Pai, Kasturi Nagesh & Rajagopalan, Ashwin Kumar & Wilkins, Nicholas Stiles & Rajendran, Arvind & Jayaraman, Ambalavan & Alptekin, Gokhan, 2019. "Cycle design and optimization of pressure swing adsorption cycles for pre-combustion CO2 capture," Applied Energy, Elsevier, vol. 254(C).
    6. Cheng, Pengfei & Thierry, David M. & Hendrix, Howard & Dombrowski, Katherine D. & Sachde, Darshan J. & Realff, Matthew J. & Scott, Joseph K., 2023. "Modeling and optimization of carbon-negative NGCC plant enabled by modular direct air capture," Applied Energy, Elsevier, vol. 341(C).
    7. Qiao, Yuanting & Bailey, Josh J. & Huang, Qi & Ke, Xuebin & Wu, Chunfei, 2022. "Potential photo-switching sorbents for CO2 capture – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Ayami Hayashi & Fuminori Sano & Takashi Homma & Keigo Akimoto, 2023. "Mitigating trade-offs between global food access and net-zero emissions: the potential contribution of direct air carbon capture and storage," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    9. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    10. Kate Dooley & Ellycia Harrould‐Kolieb & Anita Talberg, 2021. "Carbon‐dioxide Removal and Biodiversity: A Threat Identification Framework," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 34-44, April.
    11. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    12. Masood S. Alivand & Omid Mazaheri & Yue Wu & Ali Zavabeti & Andrew J. Christofferson & Nastaran Meftahi & Salvy P. Russo & Geoffrey W. Stevens & Colin A. Scholes & Kathryn A. Mumford, 2022. "Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    14. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    15. Qasem, Naef A.A. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "An efficient CO2 adsorptive storage using MOF-5 and MOF-177," Applied Energy, Elsevier, vol. 210(C), pages 317-326.
    16. Duncan McLaren & Olaf Corry, 2021. "Clash of Geofutures and the Remaking of Planetary Order: Faultlines underlying Conflicts over Geoengineering Governance," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 20-33, April.
    17. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    18. An, Keju & Farooqui, Azharuddin & McCoy, Sean T., 2022. "The impact of climate on solvent-based direct air capture systems," Applied Energy, Elsevier, vol. 325(C).
    19. Rosa, Lorenzo & Sanchez, Daniel L. & Realmonte, Giulia & Baldocchi, Dennis & D'Odorico, Paolo, 2021. "The water footprint of carbon capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Irani, Maryam & Jacobson, Andrew T. & Gasem, Khaled A.M. & Fan, Maohong, 2018. "Facilely synthesized porous polymer as support of poly(ethyleneimine) for effective CO2 capture," Energy, Elsevier, vol. 157(C), pages 1-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120309357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.