IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v335y2023ics0306261922017330.html
   My bibliography  Save this article

Distribution locational pricing mechanisms for flexible interconnected distribution system with variable renewable energy generation

Author

Listed:
  • Li, Junkai
  • Ge, Shaoyun
  • Liu, Hong
  • Zhang, Shida
  • Wang, Chengshan
  • Wang, Pengxiang

Abstract

Nowadays, distribution locational pricing mechanism has been widely used in the radial distribution network to guide the energy consumption and promote the renewables utilization. Aiming to explore the reasonable pricing policy which is applicable to the merging flexible interconnected distribution system (FIDS), this paper develops two different distribution locational pricing mechanisms for distribution lines interconnected by soft open points (SOPs). First, based on the Wasserstein ambiguity sets for uncertainties from the main grid and distribution network, a carbon-oriented distributionally robust economic dispatch model is constructed for FIDS considering different price and carbon signals from the main grid. Then, by leveraging the optimal scheme from economic scheduling model, distribution locational marginal prices (DLMPs) and equivalent DLMPs (EDLMPs) are presented to measure the marginal cost and actual cost for energy consumption in the FIDS respectively. The calculation and decomposition methods of these price signals are also developed. In case studies, a practical 63-node FIDS is chosen to verify the effectiveness of the proposed methods. Numerical results illustrate the characteristics of DLMPs and EDLMPs in FIDS under multiple uncertainties. Comparing to DLMPs, EDLMPs are more appropriate to FIDS because this pricing mechanism can reflect the lower generation cost of renewables for each consumer.

Suggested Citation

  • Li, Junkai & Ge, Shaoyun & Liu, Hong & Zhang, Shida & Wang, Chengshan & Wang, Pengxiang, 2023. "Distribution locational pricing mechanisms for flexible interconnected distribution system with variable renewable energy generation," Applied Energy, Elsevier, vol. 335(C).
  • Handle: RePEc:eee:appene:v:335:y:2023:i:c:s0306261922017330
    DOI: 10.1016/j.apenergy.2022.120476
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922017330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faqiry, M. Nazif & Edmonds, Lawryn & Wu, Hongyu & Pahwa, Anil, 2020. "Distribution locational marginal price-based transactive day-ahead market with variable renewable generation," Applied Energy, Elsevier, vol. 259(C).
    2. Coelho, António & Iria, José & Soares, Filipe, 2021. "Network-secure bidding optimization of aggregators of multi-energy systems in electricity, gas, and carbon markets," Applied Energy, Elsevier, vol. 301(C).
    3. Anthony Papavasiliou, 2018. "Analysis of distribution locational marginal prices," LIDAM Reprints CORE 3045, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Fang, Xin & Cui, Hantao & Du, Ershun & Li, Fangxing & Kang, Chongqing, 2021. "Characteristics of locational uncertainty marginal price for correlated uncertainties of variable renewable generation and demands," Applied Energy, Elsevier, vol. 282(PA).
    5. Wang, Yuwei & Yang, Yuanjuan & Fei, Haoran & Song, Minghao & Jia, Mengyao, 2022. "Wasserstein and multivariate linear affine based distributionally robust optimization for CCHP-P2G scheduling considering multiple uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    6. Bartolini, Andrea & Mazzoni, Stefano & Comodi, Gabriele & Romagnoli, Alessandro, 2021. "Impact of carbon pricing on distributed energy systems planning," Applied Energy, Elsevier, vol. 301(C).
    7. Ning, Chao & You, Fengqi, 2019. "Data-driven Wasserstein distributionally robust optimization for biomass with agricultural waste-to-energy network design under uncertainty," Applied Energy, Elsevier, vol. 255(C).
    8. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianchu Liu & Xinghang Weng & Mingyang Bao & Shaohan Lu & Changhao He, 2024. "Active Distribution Network Expansion Planning Based on Wasserstein Distance and Dual Relaxation," Energies, MDPI, vol. 17(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhijian & Li, Ying & Fan, Guangyao & Wu, Di & Guo, Jiacheng & Jin, Guangya & Zhang, Shicong & Yang, Xinyan, 2022. "Co-optimization of a novel distributed energy system integrated with hybrid energy storage in different nearly zero energy community scenarios," Energy, Elsevier, vol. 247(C).
    2. Li, Junkai & Ge, Shaoyun & Xu, Zhengyang & Liu, Hong & Li, Jifeng & Wang, Chengshan & Cheng, Xueying, 2023. "A network-secure peer-to-peer trading framework for electricity-carbon integrated market among local prosumers," Applied Energy, Elsevier, vol. 335(C).
    3. Guo, Ying & Zhou, Wenji & Ren, Hongtao & Yu, Yadong & Xu, Lei & Fuss, Maryegli, 2023. "Optimizing the aluminum supply chain network subject to the uncertainty of carbon emissions trading market," Resources Policy, Elsevier, vol. 80(C).
    4. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    5. Lewis Waswa & Munyaradzi Justice Chihota & Bernard Bekker, 2021. "A Probabilistic Conductor Size Selection Framework for Active Distribution Networks," Energies, MDPI, vol. 14(19), pages 1-19, October.
    6. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    7. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    8. Gebbran, Daniel & Mhanna, Sleiman & Ma, Yiju & Chapman, Archie C. & Verbič, Gregor, 2021. "Fair coordination of distributed energy resources with Volt-Var control and PV curtailment," Applied Energy, Elsevier, vol. 286(C).
    9. Yao, Wenliang & Wang, Chengfu & Yang, Ming & Wang, Kang & Dong, Xiaoming & Zhang, Zhenwei, 2023. "A tri-layer decision-making framework for IES considering the interaction of integrated demand response and multi-energy market clearing," Applied Energy, Elsevier, vol. 342(C).
    10. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    11. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Bidding modes for renewable energy considering electricity-carbon integrated market mechanism based on multi-agent hybrid game," Energy, Elsevier, vol. 263(PA).
    15. Mariola Ndrio & Anna Winnicki & Subhonmesh Bose, 2019. "Pricing Economic Dispatch with AC Power Flow via Local Multipliers and Conic Relaxation," Papers 1910.10673, arXiv.org, revised Oct 2021.
    16. Liu, Jia & Cheng, Haozhong & Zeng, Pingliang & Yao, Liangzhong & Shang, Ce & Tian, Yuan, 2018. "Decentralized stochastic optimization based planning of integrated transmission and distribution networks with distributed generation penetration," Applied Energy, Elsevier, vol. 220(C), pages 800-813.
    17. Edmonds, Lawryn & Derby, Melanie & Hill, Mary & Wu, Hongyu, 2021. "Coordinated operation of water and electricity distribution networks with variable renewable energy and distribution locational marginal pricing," Renewable Energy, Elsevier, vol. 177(C), pages 1438-1450.
    18. Gao, Chong & Lin, Junjie & Zeng, Jianfeng & Han, Fengwu, 2022. "Wind-photovoltaic co-generation prediction and energy scheduling of low-carbon complex regional integrated energy system with hydrogen industry chain based on copula-MILP," Applied Energy, Elsevier, vol. 328(C).
    19. Ryan, Erich & McDaniel, Benjamin & Kosanovic, Dragoljub, 2022. "Application of thermal energy storage with electrified heating and cooling in a cold climate," Applied Energy, Elsevier, vol. 328(C).
    20. Fan, Wei & Ju, Liwei & Tan, Zhongfu & Li, Xiangguang & Zhang, Amin & Li, Xudong & Wang, Yueping, 2023. "Two-stage distributionally robust optimization model of integrated energy system group considering energy sharing and carbon transfer," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:335:y:2023:i:c:s0306261922017330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.