IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9025-d987569.html
   My bibliography  Save this article

An Enhanced Second-Order Cone Programming-Based Evaluation Method on Maximum Hosting Capacity of Solar Energy in Distribution Systems with Integrated Energy

Author

Listed:
  • Chunyi Wang

    (State Grid Shandong Electric Power Company, Jinan 250001, China)

  • Fengzhang Luo

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Zheng Jiao

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Xiaolei Zhang

    (State Grid Shandong Electric Power Company, Jinan 250001, China)

  • Zhipeng Lu

    (State Grid Shandong Electric Power Company, Jinan 250001, China)

  • Yanshuo Wang

    (Economic and Technology Research Institute, State Grid Shandong Electric Power Company, Jinan 250001, China)

  • Ren Zhao

    (Economic and Technology Research Institute, State Grid Shandong Electric Power Company, Jinan 250001, China)

  • Yang Yang

    (Economic and Technology Research Institute, State Grid Shandong Electric Power Company, Jinan 250001, China)

Abstract

In order to adjust to the change of the large-scale deployment of photovoltaic (PV) power generation and fully exploit the potentialities of an integrated energy distribution system (IEDS) in solar energy accommodation, an evaluation method on maximum hosting capacity of solar energy in IEDS based on convex relaxation optimization algorithm is proposed in this paper. Firstly, an evaluation model of maximum hosting capacity of solar energy for IEDS considering the electrical-thermal comprehensive utilization of solar energy is proposed, in which the maximization of PV capacity and solar collector (SC) capacity are fully considered. Secondly, IEDS’s potential in electricity, heat, and gas energy coordinated optimization is fully exploited to enhance the hosting capacity of solar energy in which the electric distribution network, heating network, and natural gas network constraints are fully modeled. Then, an enhanced second-order cone programming (SOCP)-based method is employed to solve the proposed maximum hosting capacity model. Through SOCP relaxation and linearization, the original nonconvex nonlinear programming model is converted into the mixed-integer second-order cone programming model. Meanwhile, to ensure the exactness of SOCP relaxation and improve the computation efficiency, increasingly tight linear cuts of distribution system and natural gas system are added to the SOCP relaxation. Finally, an example is given to verify the effectiveness of the proposed method. The analysis results show that the maximum hosting capacity of solar energy can be improved significantly by realizing the coordination of an integrated multi-energy system and the optimal utilization of electricity, heat, and gas energy. By applying SOCP relaxation, linearization, and adding increasingly tight linear cuts of distribution system and natural gas system to the SOCP relaxation, the proposed model can be solved accurately and efficiently.

Suggested Citation

  • Chunyi Wang & Fengzhang Luo & Zheng Jiao & Xiaolei Zhang & Zhipeng Lu & Yanshuo Wang & Ren Zhao & Yang Yang, 2022. "An Enhanced Second-Order Cone Programming-Based Evaluation Method on Maximum Hosting Capacity of Solar Energy in Distribution Systems with Integrated Energy," Energies, MDPI, vol. 15(23), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9025-:d:987569
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9025/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9025/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abeysekera, M. & Wu, J. & Jenkins, N. & Rees, M., 2016. "Steady state analysis of gas networks with distributed injection of alternative gas," Applied Energy, Elsevier, vol. 164(C), pages 991-1002.
    2. Liu, Xuezhi & Wu, Jianzhong & Jenkins, Nick & Bagdanavicius, Audrius, 2016. "Combined analysis of electricity and heat networks," Applied Energy, Elsevier, vol. 162(C), pages 1238-1250.
    3. Wei Wei & Haoyue Jia & Yunfei Mu & Jianzhong Wu & Hongjie Jia, 2019. "A Robust Assessment Model of the Solar Electrical-Thermal Energy Comprehensive Accommodation Capability in a District Integrated Energy System," Energies, MDPI, vol. 12(7), pages 1-26, April.
    4. Gu, Wei & Wang, Jun & Lu, Shuai & Luo, Zhao & Wu, Chenyu, 2017. "Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings," Applied Energy, Elsevier, vol. 199(C), pages 234-246.
    5. Hassan Hijazi & Pierre Bonami & Gérard Cornuéjols & Adam Ouorou, 2012. "Mixed-integer nonlinear programs featuring “on/off” constraints," Computational Optimization and Applications, Springer, vol. 52(2), pages 537-558, June.
    6. Xu, Xu & Li, Jiayong & Xu, Zhao & Zhao, Jian & Lai, Chun Sing, 2019. "Enhancing photovoltaic hosting capacity—A stochastic approach to optimal planning of static var compensator devices in distribution networks," Applied Energy, Elsevier, vol. 238(C), pages 952-962.
    7. Pierre Bonami & João Gonçalves, 2012. "Heuristics for convex mixed integer nonlinear programs," Computational Optimization and Applications, Springer, vol. 51(2), pages 729-747, March.
    8. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Dongwen & Li, Yong & Abbas, Zulkarnain & Li, Dehong & Wang, Ruzhu, 2022. "Network flow calculation based on the directional nodal potential method for meshed heating networks," Energy, Elsevier, vol. 243(C).
    2. Chen, Dongwen & Hu, Xiao & Li, Yong & Abbas, Zulkarnain & Wang, Ruzhu & Li, Dehong, 2023. "Nodal conservation principle of potential energy flow analysis for energy flow calculation in energy internet," Energy, Elsevier, vol. 263(PA).
    3. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    4. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration," Applied Energy, Elsevier, vol. 230(C), pages 1126-1139.
    5. Zhang, Suhan & Gu, Wei & Lu, Hai & Qiu, Haifeng & Lu, Shuai & Wang, Dada & Liang, Junyu & Li, Wenyun, 2021. "Superposition-principle based decoupling method for energy flow calculation in district heating networks," Applied Energy, Elsevier, vol. 295(C).
    6. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    7. Zhang, Suhan & Gu, Wei & Qiu, Haifeng & Yao, Shuai & Pan, Guangsheng & Chen, Xiaogang, 2021. "State estimation models of district heating networks for integrated energy system considering incomplete measurements," Applied Energy, Elsevier, vol. 282(PA).
    8. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Hu, Songtao & Wang, Jinda, 2021. "Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation," Applied Energy, Elsevier, vol. 287(C).
    9. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.
    10. Li, Jiaxi & Wang, Dan & Jia, Hongjie & Lei, Yang & Zhou, Tianshuo & Guo, Ying, 2022. "Mechanism analysis and unified calculation model of exergy flow distribution in regional integrated energy system," Applied Energy, Elsevier, vol. 324(C).
    11. He, Ke-Lun & Zhao, Tian & Ma, Huan & Chen, Qun, 2023. "Optimal operation of integrated power and thermal systems for flexibility improvement based on evaluation and utilization of heat storage in district heating systems," Energy, Elsevier, vol. 274(C).
    12. Shen, Lu & Dou, Xiaobo & Long, Huan & Li, Chen & Chen, Kang & Zhou, Ji, 2021. "A collaborative voltage optimization utilizing flexibility of community heating systems for high PV penetration," Energy, Elsevier, vol. 232(C).
    13. Francisco Trespalacios & Ignacio E. Grossmann, 2016. "Cutting Plane Algorithm for Convex Generalized Disjunctive Programs," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 209-222, May.
    14. Frölke, Linde & Sousa, Tiago & Pinson, Pierre, 2022. "A network-aware market mechanism for decentralized district heating systems," Applied Energy, Elsevier, vol. 306(PA).
    15. Antonio Frangioni & Fabio Furini & Claudio Gentile, 2016. "Approximated perspective relaxations: a project and lift approach," Computational Optimization and Applications, Springer, vol. 63(3), pages 705-735, April.
    16. Liu, Peiyun & Ding, Tao & Zou, Zhixiang & Yang, Yongheng, 2019. "Integrated demand response for a load serving entity in multi-energy market considering network constraints," Applied Energy, Elsevier, vol. 250(C), pages 512-529.
    17. Federica Leone & Ala Hasan & Francesco Reda & Hassam ur Rehman & Fausto Carmelo Nigrelli & Francesco Nocera & Vincenzo Costanzo, 2023. "Supporting Cities towards Carbon Neutral Transition through Territorial Acupuncture," Sustainability, MDPI, vol. 15(5), pages 1-31, February.
    18. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Bao, Zhejing & Ye, Yangli & Liu, Ruijie & Cheng, Weidong & Zhao, Qiang & Wu, Ting, 2022. "Scheduling coordination of back pressure CHP coupled electricity-heat energy system with adaptive constraint strategy to accommodate uncertain wind power," Energy, Elsevier, vol. 240(C).
    20. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9025-:d:987569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.