IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v334y2023ics0306261923000764.html
   My bibliography  Save this article

Techno-economic assessment of photovoltaic plants considering high temporal resolution and non-linear dynamics of battery storage

Author

Listed:
  • Castillejo-Cuberos, A.
  • Cardemil, J.M.
  • Escobar, R.

Abstract

The addition of energy storage systems for photovoltaic plants in order to provide reliability and flexibility in their dispatch is a very active line of research, as it studies plant design configurations and different dispatch strategies to improve the coupling of variable renewable solar generation with conventional hydro/thermal electric grids to enable large-scale participation of renewables in these systems. Nevertheless, battery degradation is a critical parameter to assess the plant’s lifetime performance as it depends upon the battery’s operational principles, design and usage pattern, which coupled with their inherent non-linearities makes them a potential source of uncertainty in assessments, should the involved phenomena be overly simplified. In this work, we explore different photovoltaic plant configurations with batteries operating under a dispatch optimization algorithm that considers operational power forecasts, market pricing information and a series of constraints to improve their coupling with electric networks. The battery system is modelled considering the electrical, thermal and degradation phenomena occurring during its life cycle, as well as considering a variable charge/discharge efficiency and it’s simulated at high temporal resolution to account for any sub-hourly non-linear dynamics. The results show that considering time steps over 30 min for battery simulation during dispatch can lead to noticeable differences in key performance indicators when compared to one-minute cases and it was found that 10-minutes offered the best compromise in accuracy and computational cost. Additionally, it was found that, depending on their design, effective yearly degradation rates for batteries are highly variable and can reach values that deviate substantially from commonly-used constant assumptions, demonstrating the value of degradation modeling for lifecycle assessment. Finally, it was observed that plant configurations suited for specific operational modes such as smoothing and peak shaving could be obtained by analyzing their dispatch characteristics under the dispatch optimization algorithm, instead of following the usual approach of setting the operational mode and tuning the plant for it. This finding suggests that a design philosophy that adapts the plant’s design to the dynamic the market’s dynamic could be highly suitable for electric systems in which no central agent determines the expansion of the system.

Suggested Citation

  • Castillejo-Cuberos, A. & Cardemil, J.M. & Escobar, R., 2023. "Techno-economic assessment of photovoltaic plants considering high temporal resolution and non-linear dynamics of battery storage," Applied Energy, Elsevier, vol. 334(C).
  • Handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000764
    DOI: 10.1016/j.apenergy.2023.120712
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923000764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luoma, Jennifer & Mathiesen, Patrick & Kleissl, Jan, 2014. "Forecast value considering energy pricing in California," Applied Energy, Elsevier, vol. 125(C), pages 230-237.
    2. Leone, Andrew J. & Li, Edward Xuejun & Liu, Michelle, 2021. "On the SEC's 2010 enforcement cooperation program," Journal of Accounting and Economics, Elsevier, vol. 71(1).
    3. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    4. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    5. Gonzalez-Moreno, A. & Marcos, J. & de la Parra, I. & Marroyo, L., 2022. "A PV ramp-rate control strategy to extend battery lifespan using forecasting," Applied Energy, Elsevier, vol. 323(C).
    6. Tilman Brück & Neil T N Ferguson & Valeria Izzi & Wolfgang Stojetz, 2021. "Can Jobs Programs Build Peace? [Intergroup Conflict and Intra-Group Punishment in an Experimental Contest Game]," The World Bank Research Observer, World Bank, vol. 36(2), pages 234-259.
    7. Hemmati, Reza & Saboori, Hedayat, 2016. "Emergence of hybrid energy storage systems in renewable energy and transport applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 11-23.
    8. Kok Lay Teo & Bin Li & Changjun Yu & Volker Rehbock, 2021. "Constrained Mathematical Programming," Springer Optimization and Its Applications, in: Applied and Computational Optimal Control, chapter 0, pages 55-78, Springer.
    9. Krishanu Saha & Erik J. Sontheimer & P. J. Brooks & Melinda R. Dwinell & Charles A. Gersbach & David R. Liu & Stephen A. Murray & Shengdar Q. Tsai & Ross C. Wilson & Daniel G. Anderson & Aravind Asoka, 2021. "The NIH Somatic Cell Genome Editing program," Nature, Nature, vol. 592(7853), pages 195-204, April.
    10. Martinek, Janna & Jorgenson, Jennie & Mehos, Mark & Denholm, Paul, 2018. "A comparison of price-taker and production cost models for determining system value, revenue, and scheduling of concentrating solar power plants," Applied Energy, Elsevier, vol. 231(C), pages 854-865.
    11. Henni, Sarah & Becker, Jonas & Staudt, Philipp & vom Scheidt, Frederik & Weinhardt, Christof, 2022. "Industrial peak shaving with battery storage using a probabilistic forecasting approach: Economic evaluation of risk attitude," Applied Energy, Elsevier, vol. 327(C).
    12. Li, Yang & Vilathgamuwa, Mahinda & Choi, San Shing & Xiong, Binyu & Tang, Jinrui & Su, Yixin & Wang, Yu, 2020. "Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability," Applied Energy, Elsevier, vol. 260(C).
    13. Hartner, Michael & Permoser, Andreas, 2018. "Through the valley: The impact of PV penetration levels on price volatility and resulting revenues for storage plants," Renewable Energy, Elsevier, vol. 115(C), pages 1184-1195.
    14. Pierro, Marco & Perez, Richard & Perez, Marc & Moser, David & Cornaro, Cristina, 2020. "Italian protocol for massive solar integration: Imbalance mitigation strategies," Renewable Energy, Elsevier, vol. 153(C), pages 725-739.
    15. Denholm, Paul & Nunemaker, Jacob & Gagnon, Pieter & Cole, Wesley, 2020. "The potential for battery energy storage to provide peaking capacity in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1269-1277.
    16. Castillejo-Cuberos, Armando & Escobar, Rodrigo, 2020. "Understanding solar resource variability: An in-depth analysis, using Chile as a case of study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    17. Wu, Yaling & Liu, Zhongbing & Li, Benjia & Liu, Jiangyang & Zhang, Ling, 2022. "Energy management strategy and optimal battery capacity for flexible PV-battery system under time-of-use tariff," Renewable Energy, Elsevier, vol. 200(C), pages 558-570.
    18. Armando Castillejo-Cuberos & John Boland & Rodrigo Escobar, 2021. "Short-Term Deterministic Solar Irradiance Forecasting Considering a Heuristics-Based, Operational Approach," Energies, MDPI, vol. 14(18), pages 1-24, September.
    19. Zurita, Adriana & Mata-Torres, Carlos & Cardemil, José M. & Guédez, Rafael & Escobar, Rodrigo A., 2021. "Multi-objective optimal design of solar power plants with storage systems according to dispatch strategy," Energy, Elsevier, vol. 237(C).
    20. Richard Perez & Marc Perez & James Schlemmer & John Dise & Thomas E. Hoff & Agata Swierc & Patrick Keelin & Marco Pierro & Cristina Cornaro, 2020. "From Firm Solar Power Forecasts to Firm Solar Power Generation an Effective Path to Ultra-High Renewable Penetration a New York Case Study," Energies, MDPI, vol. 13(17), pages 1-33, August.
    21. Verástegui, Felipe & Lorca, Álvaro & Olivares, Daniel & Negrete-Pincetic, Matias, 2021. "Optimization-based analysis of decarbonization pathways and flexibility requirements in highly renewable power systems," Energy, Elsevier, vol. 234(C).
    22. DiOrio, Nicholas & Denholm, Paul & Hobbs, William B., 2020. "A model for evaluating the configuration and dispatch of PV plus battery power plants," Applied Energy, Elsevier, vol. 262(C).
    23. Rana, Md Masud & Romlie, Mohd Fakhizan & Abdullah, Mohd Faris & Uddin, Moslem & Sarkar, Md Rasel, 2021. "A novel peak load shaving algorithm for isolated microgrid using hybrid PV-BESS system," Energy, Elsevier, vol. 234(C).
    24. Pieper, Henrik & Krupenski, Igor & Brix Markussen, Wiebke & Ommen, Torben & Siirde, Andres & Volkova, Anna, 2021. "Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation," Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Albornoz & Camilo del Río & Virginia Carter & Rodrigo Escobar & Lucas Vásquez, 2023. "Fog Water Collection for Local Greenhouse Vegetable Production in the Atacama Desert," Sustainability, MDPI, vol. 15(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Chunyang & Andersen, Peter Bach & Træholt, Chresten & Hashemi, Seyedmostafa, 2023. "Grid-connected battery energy storage system: a review on application and integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. DiOrio, Nicholas & Denholm, Paul & Hobbs, William B., 2020. "A model for evaluating the configuration and dispatch of PV plus battery power plants," Applied Energy, Elsevier, vol. 262(C).
    3. Schleifer, Anna H. & Murphy, Caitlin A. & Cole, Wesley J. & Denholm, Paul, 2022. "Exploring the design space of PV-plus-battery system configurations under evolving grid conditions," Applied Energy, Elsevier, vol. 308(C).
    4. Gunkel, Philipp Andreas & Kachirayil, Febin & Bergaentzlé, Claire-Marie & McKenna, Russell & Keles, Dogan & Jacobsen, Henrik Klinge, 2023. "Uniform taxation of electricity: incentives for flexibility and cost redistribution among household categories," Energy Economics, Elsevier, vol. 127(PB).
    5. Erdmann, Melinda & Pietrzyk, Irena Magdalena & Schneider, Juliana & Helbig, Marcel & Jacob, Marita & Allmendinger, Jutta, 2022. "Bildungsungleichheit nach der Hochschulreife - das lässt sich ändern: Eine Untersuchung der Wirksamkeit eines intensiven Beratungsprogramms 1,5 Jahre nach dem Abitur," Discussion Papers, Presidential Department P 2022-002, WZB Berlin Social Science Center.
    6. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Panyawoot Boonluk & Sirote Khunkitti & Pradit Fuangfoo & Apirat Siritaratiwat, 2021. "Optimal Siting and Sizing of Battery Energy Storage: Case Study Seventh Feeder at Nakhon Phanom Substation in Thailand," Energies, MDPI, vol. 14(5), pages 1-20, March.
    8. Zhang, Xuehan & Son, Yongju & Cheong, Taesu & Choi, Sungyun, 2022. "Affine-arithmetic-based microgrid interval optimization considering uncertainty and battery energy storage system degradation," Energy, Elsevier, vol. 242(C).
    9. Zhong, Howard & Hamilton, Mark, 2023. "Exploring gender and race biases in the NFT market," Finance Research Letters, Elsevier, vol. 53(C).
    10. Murphy, C.A. & Schleifer, A. & Eurek, K., 2021. "A taxonomy of systems that combine utility-scale renewable energy and energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Hou, Qingchun & Yu, Yanghao & Du, Ershun & He, Hongjie & Zhang, Ning & Kang, Chongqing & Liu, Guojing & Zhu, Huan, 2020. "Embedding scrapping criterion and degradation model in optimal operation of peak-shaving lithium-ion battery energy storage," Applied Energy, Elsevier, vol. 278(C).
    12. He, Yi & Guo, Su & Dong, Peixin & Wang, Chen & Huang, Jing & Zhou, Jianxu, 2022. "Techno-economic comparison of different hybrid energy storage systems for off-grid renewable energy applications based on a novel probabilistic reliability index," Applied Energy, Elsevier, vol. 328(C).
    13. Kevin Marnell & Manasseh Obi & Robert Bass, 2019. "Transmission-Scale Battery Energy Storage Systems: A Systematic Literature Review," Energies, MDPI, vol. 12(23), pages 1-31, December.
    14. Muhammad Umair Mutarraf & Yacine Terriche & Kamran Ali Khan Niazi & Fawad Khan & Juan C. Vasquez & Josep M. Guerrero, 2019. "Control of Hybrid Diesel/PV/Battery/Ultra-Capacitor Systems for Future Shipboard Microgrids," Energies, MDPI, vol. 12(18), pages 1-23, September.
    15. He, Yi & Guo, Su & Zhou, Jianxu & Song, Guotao & Kurban, Aynur & Wang, Haowei, 2022. "The multi-stage framework for optimal sizing and operation of hybrid electrical-thermal energy storage system," Energy, Elsevier, vol. 245(C).
    16. Bojana Škrbić & Željko Đurišić, 2023. "Novel Planning Methodology for Spatially Optimized RES Development Which Minimizes Flexibility Requirements for Their Integration into the Power System," Energies, MDPI, vol. 16(7), pages 1-34, April.
    17. Nawaz Edoo & Robert T. F. Ah King, 2021. "Techno-Economic Analysis of Utility-Scale Solar Photovoltaic Plus Battery Power Plant," Energies, MDPI, vol. 14(23), pages 1-22, December.
    18. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    19. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    20. Patrizia Ghisellini & Amos Ncube & Gianni D’Ambrosio & Renato Passaro & Sergio Ulgiati, 2021. "Potential Energy Savings from Circular Economy Scenarios Based on Construction and Agri-Food Waste in Italy," Energies, MDPI, vol. 14(24), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.