IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v325y2022ics0306261922011308.html
   My bibliography  Save this article

Towards renewable public transport: Mining the performance of electric buses using solar-radiation as an auxiliary power source

Author

Listed:
  • Chen, Haoqian
  • Sui, Yi
  • Shang, Wen-long
  • Sun, Rencheng
  • Chen, Zhiheng
  • Wang, Changying
  • Han, Chunjia
  • Zhang, Yuqian
  • Zhang, Haoran

Abstract

Transforming the road public transport to run on renewable energy is vital solution to achieve carbon neutral and net zero goals. This paper evaluates the potential of using solar radiation-generated electricity as an auxiliary power supplementary for the battery of electric buses, based on a developed framework that using publicly street-view panoramas, GPS trajectory data and DEM data as input parameters of solar radiation model. A case study of Qingdao, China with 547 bus routes, 28,661 street-view panoramas shows that the solar-radiation electricity generated at noon during the operation accounts for about one-fifth, one-eighth of the total electricity consumption of a bus traveling one kilometer in a sunny day and a cloudy day, respectively. Spatial variability shows significant solar-radiation power generation advantages in newly-launched areas and expressway. The solar power generated in a sunny day can make a bus half of passengers and with air conditioner off at least one extra trip in 2:1 replacement schedule, and nearly close to one extra trip in 4:3 replacement schedule. A correlated relation between the solar-radiation power generation benefit and the operation schedule of electric buses is observed, implying that the high cost of 2:1 replacement schedule for long-distance routes during summer or winter can be reduced. The proposed framework can help us evaluate and understand the feasibility of solar radiation-generated electricity energy of electric bus fleets covering the large-scale urban areas at different times, locations, and weather conditions, so as to support effective decisions at better planning of PV-integrated electric buses.

Suggested Citation

  • Chen, Haoqian & Sui, Yi & Shang, Wen-long & Sun, Rencheng & Chen, Zhiheng & Wang, Changying & Han, Chunjia & Zhang, Yuqian & Zhang, Haoran, 2022. "Towards renewable public transport: Mining the performance of electric buses using solar-radiation as an auxiliary power source," Applied Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011308
    DOI: 10.1016/j.apenergy.2022.119863
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922011308
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen-Long Shang & Yanyan Chen & Chengcheng Song & Washington Y. Ochieng, 2020. "Robustness Analysis of Urban Road Networks from Topological and Operational Perspectives," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, August.
    2. Freitas, S. & Catita, C. & Redweik, P. & Brito, M.C., 2015. "Modelling solar potential in the urban environment: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 915-931.
    3. Jari Vepsäläinen & Antti Ritari & Antti Lajunen & Klaus Kivekäs & Kari Tammi, 2018. "Energy Uncertainty Analysis of Electric Buses," Energies, MDPI, vol. 11(12), pages 1-29, November.
    4. Sui, Yi & Zhang, Haoran & Shang, Wenlong & Sun, Rencheng & Wang, Changying & Ji, Jun & Song, Xuan & Shao, Fengjing, 2020. "Mining urban sustainable performance: Spatio-temporal emission potential changes of urban transit buses in post-COVID-19 future," Applied Energy, Elsevier, vol. 280(C).
    5. Kevin R. Mallon & Francis Assadian & Bo Fu, 2017. "Analysis of On-Board Photovoltaics for a Battery Electric Bus and Their Impact on Battery Lifespan," Energies, MDPI, vol. 10(7), pages 1-31, July.
    6. Zicheng Bi & Robert Kleine & Gregory A. Keoleian, 2017. "Integrated Life Cycle Assessment and Life Cycle Cost Model for Comparing Plug-in versus Wireless Charging for an Electric Bus System," Journal of Industrial Ecology, Yale University, vol. 21(2), pages 344-355, April.
    7. Gao, Zhiming & Lin, Zhenhong & LaClair, Tim J. & Liu, Changzheng & Li, Jan-Mou & Birky, Alicia K. & Ward, Jacob, 2017. "Battery capacity and recharging needs for electric buses in city transit service," Energy, Elsevier, vol. 122(C), pages 588-600.
    8. Sui, Yi & Shao, Fengjing & Yu, Xiang & Sun, Rencheng & Li, Shujing, 2019. "Public transport network model based on layer operations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 984-995.
    9. Joeri Rogelj & Gunnar Luderer & Robert C. Pietzcker & Elmar Kriegler & Michiel Schaeffer & Volker Krey & Keywan Riahi, 2015. "Energy system transformations for limiting end-of-century warming to below 1.5 °C," Nature Climate Change, Nature, vol. 5(6), pages 519-527, June.
    10. ur Rehman, Naveed & Hijazi, Mohamad & Uzair, Muhammad, 2020. "Solar potential assessment of public bus routes for solar buses," Renewable Energy, Elsevier, vol. 156(C), pages 193-200.
    11. Gallet, Marc & Massier, Tobias & Hamacher, Thomas, 2018. "Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks," Applied Energy, Elsevier, vol. 230(C), pages 344-356.
    12. Bi, Zicheng & Song, Lingjun & De Kleine, Robert & Mi, Chunting Chris & Keoleian, Gregory A., 2015. "Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system," Applied Energy, Elsevier, vol. 146(C), pages 11-19.
    13. Wen-Long Shang & Yanyan Chen & Huibo Bi & Haoran Zhang & Changxi Ma & Washington Y. Ochieng, 2020. "Statistical Characteristics and Community Analysis of Urban Road Networks," Complexity, Hindawi, vol. 2020, pages 1-21, September.
    14. Bi, Huibo & Shang, Wen-Long & Chen, Yanyan & Wang, Kezhi & Yu, Qing & Sui, Yi, 2021. "GIS aided sustainable urban road management with a unifying queueing and neural network model," Applied Energy, Elsevier, vol. 291(C).
    15. Liu, Liansheng & Kong, Fanxin & Liu, Xue & Peng, Yu & Wang, Qinglong, 2015. "A review on electric vehicles interacting with renewable energy in smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 648-661.
    16. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    17. Oh, Myeongchan & Kim, Sung-Min & Park, Hyeong-Dong, 2020. "Estimation of photovoltaic potential of solar bus in an urban area: Case study in Gwanak, Seoul, Korea," Renewable Energy, Elsevier, vol. 160(C), pages 1335-1348.
    18. Alonso-Montesinos, J. & Batlles, F.J., 2015. "Solar radiation forecasting in the short- and medium-term under all sky conditions," Energy, Elsevier, vol. 83(C), pages 387-393.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhanasingh Sivalinga Vijayan & Eugeniusz Koda & Arvindan Sivasuriyan & Jan Winkler & Parthiban Devarajan & Ramamoorthy Sanjay Kumar & Aleksandra Jakimiuk & Piotr Osinski & Anna Podlasek & Magdalena Da, 2023. "Advancements in Solar Panel Technology in Civil Engineering for Revolutionizing Renewable Energy Solutions—A Review," Energies, MDPI, vol. 16(18), pages 1-33, September.
    2. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    3. Adrian Chmielewski & Piotr Piórkowski & Krzysztof Bogdziński & Jakub Możaryn, 2023. "Application of a Bidirectional DC/DC Converter to Control the Power Distribution in the Battery–Ultracapacitor System," Energies, MDPI, vol. 16(9), pages 1-40, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2020. "A probabilistic fleet analysis for energy consumption, life cycle cost and greenhouse gas emissions modelling of bus technologies," Applied Energy, Elsevier, vol. 261(C).
    2. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    3. Yu, Qing & Li, Weifeng & Zhang, Haoran & Chen, Jinyu, 2022. "GPS data in taxi-sharing system: Analysis of potential demand and assessment of fuel consumption based on routing probability model," Applied Energy, Elsevier, vol. 314(C).
    4. Hatem Abdelaty & Moataz Mohamed, 2021. "A Prediction Model for Battery Electric Bus Energy Consumption in Transit," Energies, MDPI, vol. 14(10), pages 1-26, May.
    5. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Hussein M. K. Al-Masri & Thanikanti Sudhakar Babu & Yap Hoon & Khaled Alzaareer & N. V. Phanendra Babu, 2021. "Review of the Estimation Methods of Energy Consumption for Battery Electric Buses," Energies, MDPI, vol. 14(22), pages 1-28, November.
    7. Raka Jovanovic & Islam Safak Bayram & Sertac Bayhan & Stefan Voß, 2021. "A GRASP Approach for Solving Large-Scale Electric Bus Scheduling Problems," Energies, MDPI, vol. 14(20), pages 1-23, October.
    8. Marmiroli, Benedetta & Venditti, Mattia & Dotelli, Giovanni & Spessa, Ezio, 2020. "The transport of goods in the urban environment: A comparative life cycle assessment of electric, compressed natural gas and diesel light-duty vehicles," Applied Energy, Elsevier, vol. 260(C).
    9. Basma, Hussein & Haddad, Marc & Mansour, Charbel & Nemer, Maroun & Stabat, Pascal, 2022. "Evaluation of the techno-economic performance of battery electric buses: Case study of a bus line in paris," Research in Transportation Economics, Elsevier, vol. 95(C).
    10. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    11. Qiao, Dongdong & Wei, Xuezhe & Fan, Wenjun & Jiang, Bo & Lai, Xin & Zheng, Yuejiu & Tang, Xiaolin & Dai, Haifeng, 2022. "Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles," Applied Energy, Elsevier, vol. 317(C).
    12. Zhou, Junfeng & Zhang, Yanhui & Zhang, Yubo & Shang, Wen-Long & Yang, Zhile & Feng, Wei, 2022. "Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning," Applied Energy, Elsevier, vol. 314(C).
    13. Tian, B. & Loonen, R.C.G.M. & Bognár, Á. & Hensen, J.L.M., 2022. "Impacts of surface model generation approaches on raytracing-based solar potential estimation in urban areas," Renewable Energy, Elsevier, vol. 198(C), pages 804-824.
    14. Teresa Pamuła & Wiesław Pamuła, 2020. "Estimation of the Energy Consumption of Battery Electric Buses for Public Transport Networks Using Real-World Data and Deep Learning," Energies, MDPI, vol. 13(9), pages 1-17, May.
    15. Shang, Wen-Long & Chen, Yishui & Yu, Qing & Song, Xuewang & Chen, Yanyan & Ma, Xiaolei & Chen, Xiqun & Tan, Zhijia & Huang, Jianling & Ochieng, Washington, 2023. "Spatio-temporal analysis of carbon footprints for urban public transport systems based on smart card data," Applied Energy, Elsevier, vol. 352(C).
    16. Edwin R. Grijalva & José María López Martínez, 2019. "Analysis of the Reduction of CO 2 Emissions in Urban Environments by Replacing Conventional City Buses by Electric Bus Fleets: Spain Case Study," Energies, MDPI, vol. 12(3), pages 1-31, February.
    17. Xylia, Maria & Silveira, Semida, 2018. "The role of charging technologies in upscaling the use of electric buses in public transport: Experiences from demonstration projects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 399-415.
    18. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs, 2019. "Energy-aware predictive control for electrified bus networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Nnaemeka V. Emodi & Udochukwu B. Akuru & Michael O. Dioha & Patrick Adoba & Remeredzai J. Kuhudzai & Olusola Bamisile, 2023. "The Role of Internet of Things on Electric Vehicle Charging Infrastructure and Consumer Experience," Energies, MDPI, vol. 16(10), pages 1-18, May.
    20. Li, Pengshun & Zhang, Yuhang & Zhang, Yi & Zhang, Yi & Zhang, Kai, 2021. "Prediction of electric bus energy consumption with stochastic speed profile generation modelling and data driven method based on real-world big data," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.