IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v320y2022ics0306261922006523.html
   My bibliography  Save this article

Experimental and numerical investigations of solar charging performances of 3D porous skeleton based latent heat storage devices

Author

Listed:
  • Yao, Haichen
  • Liu, Xianglei
  • Luo, Qingyang
  • Xu, Qiao
  • Tian, Yang
  • Ren, Tianze
  • Zheng, Hangbin
  • Gao, Ke
  • Dang, Chunzhuo
  • Xuan, Yimin
  • Liu, Zhan
  • Yang, Xiaohu
  • Ding, Yulong

Abstract

Volumetric-absorption-based solar charging via phase change processes is an emerging technology to harvest solar energy, however, how pore-scale radiation transport interacts with latent heat thermal energy storage processes is still vague. In this paper, volumetric-absorption-based solar charging processes at pore scale are investigated by experiments and numerical simulations based on Monte Carlo ray tracing coupled with the Finite Volume Method. The solar radiation transport, temperature distribution, liquid fraction, and solar thermal energy storage efficiency are systematically evaluated under different radiation intensities and skeleton thermal conductivities. Compared to the traditional surface-absorption-based mode, solar thermal energy storage efficiency of the volumetric-absorption mode is enhanced by 94% due to presence of multi-region heat sources. The solar thermal energy storage efficiency reaches a peak value of 54.09% at a radiation intensity of 10 kW·m−2. That is because low radiation intensities increase the melting time while too high intensities lead to large temperature nonuniformity, leading to high heat losses for both scenarios. Increasing the skeleton thermal conductivity can continuously improve the efficiency by reducing temperature nonuniformity, but further enhancement becomes marginal for thermal conductivity over 90 W·m−1·K−1. This work paves the way for the design and deployment of efficient integrated solar thermal conversion and latent heat storage systems.

Suggested Citation

  • Yao, Haichen & Liu, Xianglei & Luo, Qingyang & Xu, Qiao & Tian, Yang & Ren, Tianze & Zheng, Hangbin & Gao, Ke & Dang, Chunzhuo & Xuan, Yimin & Liu, Zhan & Yang, Xiaohu & Ding, Yulong, 2022. "Experimental and numerical investigations of solar charging performances of 3D porous skeleton based latent heat storage devices," Applied Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:appene:v:320:y:2022:i:c:s0306261922006523
    DOI: 10.1016/j.apenergy.2022.119297
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922006523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, P. & Li, J.B. & Zhou, L. & Liu, D.Y., 2020. "Acceptance-Rejection Sampling Based Monte Carlo Ray Tracing in Anisotropic Porous Media," Energy, Elsevier, vol. 199(C).
    2. Zheng, Hangbin & Liu, Xianglei & Xuan, Yimin & Song, Chao & Liu, Dachuan & Zhu, Qibin & Zhu, Zhonghui & Gao, Ke & Li, Yongliang & Ding, Yulong, 2021. "Thermochemical heat storage performances of fluidized black CaCO3 pellets under direct concentrated solar irradiation," Renewable Energy, Elsevier, vol. 178(C), pages 1353-1369.
    3. Kossyvakis, D.N. & Vossou, C.G. & Provatidis, C.G. & Hristoforou, E.V., 2015. "Computational analysis and performance optimization of a solar thermoelectric generator," Renewable Energy, Elsevier, vol. 81(C), pages 150-161.
    4. Roldán, M.I. & Smirnova, O. & Fend, T. & Casas, J.L. & Zarza, E., 2014. "Thermal analysis and design of a volumetric solar absorber depending on the porosity," Renewable Energy, Elsevier, vol. 62(C), pages 116-128.
    5. Yang, Xiaohu & Lu, Zhao & Bai, Qingsong & Zhang, Qunli & Jin, Liwen & Yan, Jinyue, 2017. "Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins," Applied Energy, Elsevier, vol. 202(C), pages 558-570.
    6. Rathod, Manish K. & Banerjee, Jyotirmay, 2013. "Thermal stability of phase change materials used in latent heat energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 246-258.
    7. Yuanyuan Zhang & Guangming Zhu & Biqin Dong & Feng Wang & Jiaoning Tang & Florian J. Stadler & Guanghui Yang & Shuxian Hong & Feng Xing, 2021. "Interfacial jamming reinforced Pickering emulgel for arbitrary architected nanocomposite with connected nanomaterial matrix," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Zhongyong Wang & Zhen Tong & Qinxian Ye & Hang Hu & Xiao Nie & Chen Yan & Wen Shang & Chengyi Song & Jianbo Wu & Jun Wang & Hua Bao & Peng Tao & Tao Deng, 2017. "Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    9. Zhang, Long & Zhou, Kechao & Wei, Quiping & Ma, Li & Ye, Wentao & Li, Haichao & Zhou, Bo & Yu, Zhiming & Lin, Cheng-Te & Luo, Jingting & Gan, Xueping, 2019. "Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage," Applied Energy, Elsevier, vol. 233, pages 208-219.
    10. Yu, Qinghua & Tchuenbou-Magaia, Fideline & Al-Duri, Bushra & Zhang, Zhibing & Ding, Yulong & Li, Yongliang, 2018. "Thermo-mechanical analysis of microcapsules containing phase change materials for cold storage," Applied Energy, Elsevier, vol. 211(C), pages 1190-1202.
    11. Abraham, J.P. & Plourde, B.D. & Minkowycz, W.J., 2015. "Continuous flow solar thermal pasteurization of drinking water: Methods, devices, microbiology, and analysis," Renewable Energy, Elsevier, vol. 81(C), pages 795-803.
    12. George Ni & Gabriel Li & Svetlana V. Boriskina & Hongxia Li & Weilin Yang & TieJun Zhang & Gang Chen, 2016. "Steam generation under one sun enabled by a floating structure with thermal concentration," Nature Energy, Nature, vol. 1(9), pages 1-7, September.
    13. Zhu, Qibin & Xuan, Yimin, 2019. "Improving the performance of volumetric solar receivers with a spectrally selective gradual structure and swirling characteristics," Energy, Elsevier, vol. 172(C), pages 467-476.
    14. Li, Xinyi & Cui, Wei & Simon, Terrence & Ma, Ting & Cui, Tianhong & Wang, Qiuwang, 2021. "Pore-scale analysis on selection of composite phase change materials for photovoltaic thermal management," Applied Energy, Elsevier, vol. 302(C).
    15. Shi, Lei & Hu, Yanwei & Bai, Yijie & He, Yurong, 2020. "Dynamic tuning of magnetic phase change composites for solar-thermal conversion and energy storage," Applied Energy, Elsevier, vol. 263(C).
    16. Xiao, X. & Zhang, P. & Li, M., 2013. "Preparation and thermal characterization of paraffin/metal foam composite phase change material," Applied Energy, Elsevier, vol. 112(C), pages 1357-1366.
    17. Li, Yongliang & Wang, Xiang & Li, Dacheng & Ding, Yulong, 2012. "A trigeneration system based on compressed air and thermal energy storage," Applied Energy, Elsevier, vol. 99(C), pages 316-323.
    18. Tian, Yang & Liu, Xianglei & Zheng, Hangbin & Xu, Qiao & Zhu, Zhonghui & Luo, Qinyang & Song, Chao & Gao, Ke & Yao, Haichen & Dang, Chunzhuo & Xuan, Yimin, 2022. "Artificial mitochondrion for fast latent heat storage: Experimental study and lattice Boltzmann simulation," Energy, Elsevier, vol. 245(C).
    19. Wang, Yunming & Tang, Bingtao & Zhang, Shufen, 2014. "Organic, cross-linking, and shape-stabilized solar thermal energy storage materials: A reversible phase transition driven by broadband visible light," Applied Energy, Elsevier, vol. 113(C), pages 59-66.
    20. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    21. Yang, Xiaohu & Bai, Qingsong & Guo, Zengxu & Niu, Zhaoyang & Yang, Chun & Jin, Liwen & Lu, Tian Jian & Yan, Jinyue, 2018. "Comparison of direct numerical simulation with volume-averaged method on composite phase change materials for thermal energy storage," Applied Energy, Elsevier, vol. 229(C), pages 700-714.
    22. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    23. Luo, Qingyang & Liu, Xianglei & Wang, Haolei & Xu, Qiao & Tian, Yang & Liang, Ting & Liu, Qibin & Liu, Zhan & Yang, Xiaohu & Xuan, Yimin & Li, Yongliang & Ding, Yulong, 2022. "Synergetic enhancement of heat storage density and heat transport ability of phase change materials inlaid in 3D hierarchical ceramics," Applied Energy, Elsevier, vol. 306(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Haichen & Liu, Xianglei & Li, Jiawei & Luo, Qingyang & Tian, Yang & Xuan, Yimin, 2023. "Chloroplast-granum inspired phase change capsules accelerate energy storage of packed-bed thermal energy storage system," Energy, Elsevier, vol. 284(C).
    2. Chen, Xue & Lyu, Jinxin & Sun, Chuang & Xia, Xinlin & Wang, Fuqiang, 2023. "Pore-scale evaluation on a volumetric solar receiver with different optical property control strategies," Energy, Elsevier, vol. 278(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    2. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Wu, Shaofei & Yan, Ting & Kuai, Zihan & Pan, Weiguo, 2020. "Preparation and thermal property analysis of a novel phase change heat storage material," Renewable Energy, Elsevier, vol. 150(C), pages 1057-1065.
    4. Jana Shafi & Mikhail Sheremet & Mehdi Fteiti & Abdulkafi Mohammed Saeed & Mohammad Ghalambaz, 2023. "Computational Study of Phase Change Heat Transfer and Latent Heat Energy Storage for Thermal Management of Electronic Components Using Neural Networks," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    5. Zhao, Jiaxin & Ma, Tao & Li, Zhenpeng & Song, Aotian, 2019. "Year-round performance analysis of a photovoltaic panel coupled with phase change material," Applied Energy, Elsevier, vol. 245(C), pages 51-64.
    6. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Yang, Xiaohu & Wei, Pan & Cui, Xin & Jin, Liwen & He, Ya-Ling, 2019. "Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study," Applied Energy, Elsevier, vol. 250(C), pages 1457-1467.
    8. Chen, Renjie & Yao, Ruimin & Xia, Wei & Zou, Ruqiang, 2015. "Electro/photo to heat conversion system based on polyurethane embedded graphite foam," Applied Energy, Elsevier, vol. 152(C), pages 183-188.
    9. Joshi, Varun & Rathod, Manish K., 2019. "Thermal performance augmentation of metal foam infused phase change material using a partial filling strategy: An evaluation for fill height ratio and porosity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Li, J.B. & Wang, P. & Liu, D.Y., 2022. "Optimization on the gradually varied pore structure distribution for the irradiated absorber," Energy, Elsevier, vol. 240(C).
    11. Yang, Xiaohu & Guo, Zengxu & Liu, Yanhua & Jin, Liwen & He, Ya-Ling, 2019. "Effect of inclination on the thermal response of composite phase change materials for thermal energy storage," Applied Energy, Elsevier, vol. 238(C), pages 22-33.
    12. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    13. Ziyuan Huang & Hongming Zhang & Chao Zhang & Wei Tang & Guangming Xiao & Yanxia Du, 2024. "A Pore Scale Study on Heat Transfer Characteristics of Integrated Thermal Protection Structures with Phase Change Material," Energies, MDPI, vol. 17(2), pages 1-15, January.
    14. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    15. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    17. Jiang, Liang & Lei, Yuan & Liu, Qinfeng & Lei, Jingxin, 2020. "Polyethylene glycol based self-luminous phase change materials for both thermal and light energy storage," Energy, Elsevier, vol. 193(C).
    18. Shubo Liu & Yi Yang & Kuiyuan Ma & Haichuan Jin & Xin Jin, 2022. "Experimental Study of Pulsating Heat Pipes Filled with Nanofluids under the Irradiation of Solar Simulator," Energies, MDPI, vol. 15(23), pages 1-15, December.
    19. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    20. Meysam Karami Rad & Mahmoud Omid & Ali Rajabipour & Fariba Tajabadi & Lasse Aistrup Rosendahl & Alireza Rezaniakolaei, 2018. "Optimum Thermal Concentration of Solar Thermoelectric Generators (STEG) in Realistic Meteorological Condition," Energies, MDPI, vol. 11(9), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:320:y:2022:i:c:s0306261922006523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.