IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p356-d1030545.html
   My bibliography  Save this article

Computational Study of Phase Change Heat Transfer and Latent Heat Energy Storage for Thermal Management of Electronic Components Using Neural Networks

Author

Listed:
  • Jana Shafi

    (Department of Computer Science, College of Arts and Science, Prince Sattam bin Abdul Aziz University, Wadi Ad-Dawasir 11991, Saudi Arabia)

  • Mikhail Sheremet

    (Laboratory on Convective Heat and Mass Transfer, Tomsk State University, 634045 Tomsk, Russia)

  • Mehdi Fteiti

    (Physics Department, Faculty of Applied Science, Umm Al-Qura University, Makkah 24381, Saudi Arabia)

  • Abdulkafi Mohammed Saeed

    (Department of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia)

  • Mohammad Ghalambaz

    (Laboratory on Convective Heat and Mass Transfer, Tomsk State University, 634045 Tomsk, Russia)

Abstract

The phase change heat transfer of nano-enhanced phase change materials (NePCMs) was addressed in a heatsink filled with copper metal foam fins. The NePCM was made of 1-Tetradecanol graphite nanoplatelets. The heatsink was an annulus contained where its outer surface was subject to a convective cooling of an external flow while its inner surface was exposed to a constant heat flux. The governing equations, including the momentum and heat transfer with phase change, were explained in a partial differential equation form and integrated using the finite element method. An artificial neural network was employed to map the relationship between the anisotropic angle and nanoparticles fractions with the melting volume fraction. The computational model data were used to successfully train the ANN. The trained ANN showed an R-value close to unity, indicating the high prediction accuracy of the neural network. Then, ANN was used to produce maps of melting fractions as a function of design parameters. The impact of the geometrical placement of metal foam fins and concentrations of the nanoparticles on the surface heat transfer was addressed. It was found that spreading the fins (large angles between the fins) could improve the cooling performance of the heatsink without increasing its weight. Moreover, the nanoparticles could reduce the thermal energy storage capacity of the heatsink since they do not contribute to heat transfer. In addition, since the nanoparticles generally increase the surface heat transfer, they could be beneficial only with 1.0% wt in the middle stages of the melting heat transfer.

Suggested Citation

  • Jana Shafi & Mikhail Sheremet & Mehdi Fteiti & Abdulkafi Mohammed Saeed & Mohammad Ghalambaz, 2023. "Computational Study of Phase Change Heat Transfer and Latent Heat Energy Storage for Thermal Management of Electronic Components Using Neural Networks," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:356-:d:1030545
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/356/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/356/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdi, Amir & Martin, Viktoria & Chiu, Justin N.W., 2019. "Numerical investigation of melting in a cavity with vertically oriented fins," Applied Energy, Elsevier, vol. 235(C), pages 1027-1040.
    2. Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
    3. Zhang, Chunwei & Yu, Meng & Fan, Yubin & Zhang, Xuejun & Zhao, Yang & Qiu, Limin, 2020. "Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe," Energy, Elsevier, vol. 195(C).
    4. Xiao, X. & Zhang, P. & Li, M., 2013. "Preparation and thermal characterization of paraffin/metal foam composite phase change material," Applied Energy, Elsevier, vol. 112(C), pages 1357-1366.
    5. Yang, Xiaohu & Wei, Pan & Cui, Xin & Jin, Liwen & He, Ya-Ling, 2019. "Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study," Applied Energy, Elsevier, vol. 250(C), pages 1457-1467.
    6. Yang, Xiaohu & Bai, Qingsong & Guo, Zengxu & Niu, Zhaoyang & Yang, Chun & Jin, Liwen & Lu, Tian Jian & Yan, Jinyue, 2018. "Comparison of direct numerical simulation with volume-averaged method on composite phase change materials for thermal energy storage," Applied Energy, Elsevier, vol. 229(C), pages 700-714.
    7. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Hu, Haitao & Zhao, Yaxin & Li, Yuhan, 2023. "Research progress on flow and heat transfer characteristics of fluids in metal foams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Mehdi Ghalambaz & Hani Abulkhair & Obai Younis & Mehdi Fteiti & Ali J. Chamkha & Iqbal Ahmed Moujdin & Abdulmohsen Omar Alsaiari, 2022. "Low-Temperature Industrial Waste Heat (IWH) Recovery Using a New Design for Fast-Charging Thermal Energy Storage Units," Mathematics, MDPI, vol. 11(1), pages 1-19, December.
    5. Dai, Renkun & Li, Wei & Mostaghimi, Javad & Wang, Qiuwang & Zeng, Min, 2020. "On the optimal heat source location of partially heated energy storage process using the newly developed simplified enthalpy based lattice Boltzmann method," Applied Energy, Elsevier, vol. 275(C).
    6. Yao, Haichen & Liu, Xianglei & Luo, Qingyang & Xu, Qiao & Tian, Yang & Ren, Tianze & Zheng, Hangbin & Gao, Ke & Dang, Chunzhuo & Xuan, Yimin & Liu, Zhan & Yang, Xiaohu & Ding, Yulong, 2022. "Experimental and numerical investigations of solar charging performances of 3D porous skeleton based latent heat storage devices," Applied Energy, Elsevier, vol. 320(C).
    7. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    8. Xiao, Xin & Jia, Hongwei & Wen, Dongsheng & Zhao, Xudong, 2020. "Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite," Energy, Elsevier, vol. 192(C).
    9. Wang, Zhifeng & Wu, Jiani & Lei, Dongqiang & Liu, Hong & Li, Jinping & Wu, Zhiyong, 2020. "Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application," Applied Energy, Elsevier, vol. 261(C).
    10. Liu, Zhan & Liu, Zihui & Xin, Xuan & Yang, Xiaohu, 2020. "Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis," Applied Energy, Elsevier, vol. 269(C).
    11. Chen, Xue & Li, Xiaolei & Xia, Xinlin & Sun, Chuang & Liu, Rongqiang, 2021. "Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions," Energy, Elsevier, vol. 216(C).
    12. Yang, Xiaohu & Yu, Jiabang & Xiao, Tian & Hu, Zehuan & He, Ya-Ling, 2020. "Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam," Applied Energy, Elsevier, vol. 261(C).
    13. Wu, Shaofei & Yan, Ting & Kuai, Zihan & Pan, Weiguo, 2020. "Preparation and thermal property analysis of a novel phase change heat storage material," Renewable Energy, Elsevier, vol. 150(C), pages 1057-1065.
    14. Zhao, Jiaxin & Ma, Tao & Li, Zhenpeng & Song, Aotian, 2019. "Year-round performance analysis of a photovoltaic panel coupled with phase change material," Applied Energy, Elsevier, vol. 245(C), pages 51-64.
    15. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Yang, Xiaohu & Wei, Pan & Cui, Xin & Jin, Liwen & He, Ya-Ling, 2019. "Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study," Applied Energy, Elsevier, vol. 250(C), pages 1457-1467.
    17. Nakhchi, M.E. & Hatami, M. & Rahmati, M., 2021. "A numerical study on the effects of nanoparticles and stair fins on performance improvement of phase change thermal energy storages," Energy, Elsevier, vol. 215(PA).
    18. Xiaokuan You & Xiangxin Sun & Jie Huang & Zilong Wang & Hua Zhang, 2023. "Influence of Copper Foam on the Thermal Characteristics of Phase Change Materials," Energies, MDPI, vol. 16(4), pages 1-15, February.
    19. Zhang, Ji & Cao, Zhi & Huang, Sheng & Huang, Xiaohui & Liang, Kun & Yang, Yan & Zhang, Haoran & Tian, Mi & Akrami, Mohammad & Wen, Chuang, 2022. "Improving the melting performance of phase change materials using novel fins and nanoparticles in tubular energy storage systems," Applied Energy, Elsevier, vol. 322(C).
    20. Hashem Zadeh, Seyed Mohsen & Mehryan, S.A.M. & Ghalambaz, Mohammad & Ghodrat, Maryam & Young, John & Chamkha, Ali, 2020. "Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives," Energy, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:356-:d:1030545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.