IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v171y2023ics1364032122008917.html
   My bibliography  Save this article

Research progress on flow and heat transfer characteristics of fluids in metal foams

Author

Listed:
  • Hu, Haitao
  • Zhao, Yaxin
  • Li, Yuhan

Abstract

Open-cell metal foam has a great potential for manufacturing compact heat exchangers in energy conservation systems due to the advantages of large specific surface area and high thermal conductivity. In this paper, the research progress on the flow and heat transfer characteristics of fluids in metal foams was reviewed, including the distribution characteristics in fuel cells, heat transfer of phase change materials, convection of dry air and wet air, pool boiling, flow boiling and condensation. The research results show that the metal foam can be applied to improve the performance of fuel cells and enhance the heat transfer of phase changer material in thermal energy storage systems; the metal foam provides better heat transfer performance than the traditional slit fins under dehumidifying conditions, and the surface modification on metal fibers enhances the boiling and condensation heat transfer characteristics. The correlations for predicting the heat transfer and flow characteristics of fluids in metal foams were summarized. Recommendations for further investigations on metal foams were proposed based on the surveyed literature.

Suggested Citation

  • Hu, Haitao & Zhao, Yaxin & Li, Yuhan, 2023. "Research progress on flow and heat transfer characteristics of fluids in metal foams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:rensus:v:171:y:2023:i:c:s1364032122008917
    DOI: 10.1016/j.rser.2022.113010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122008917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.113010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qi, Zhaogang, 2013. "Water retention and drainage on air side of heat exchangers—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 1-10.
    2. Aramesh, M. & Shabani, B., 2022. "Metal foam-phase change material composites for thermal energy storage: A review of performance parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Dehui Wang & Qiangqiang Sun & Matti J. Hokkanen & Chenglin Zhang & Fan-Yen Lin & Qiang Liu & Shun-Peng Zhu & Tianfeng Zhou & Qing Chang & Bo He & Quan Zhou & Longquan Chen & Zuankai Wang & Robin H. A., 2020. "Design of robust superhydrophobic surfaces," Nature, Nature, vol. 582(7810), pages 55-59, June.
    4. Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
    5. Tan, Weng Cheong & Saw, Lip Huat & Thiam, Hui San & Xuan, Jin & Cai, Zuansi & Yew, Ming Chian, 2018. "Overview of porous media/metal foam application in fuel cells and solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 181-197.
    6. Dadhich, Manish & Prajapati, Om Shankar, 2019. "A brief review on factors affecting flow and pool boiling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 607-625.
    7. Guo, Junfei & Liu, Zhan & Du, Zhao & Yu, Jiabang & Yang, Xiaohu & Yan, Jinyue, 2021. "Effect of fin-metal foam structure on thermal energy storage: An experimental study," Renewable Energy, Elsevier, vol. 172(C), pages 57-70.
    8. Xiao, X. & Zhang, P. & Li, M., 2013. "Preparation and thermal characterization of paraffin/metal foam composite phase change material," Applied Energy, Elsevier, vol. 112(C), pages 1357-1366.
    9. Yang, Xiaohu & Wei, Pan & Cui, Xin & Jin, Liwen & He, Ya-Ling, 2019. "Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study," Applied Energy, Elsevier, vol. 250(C), pages 1457-1467.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ziwei & Yang, Yi & Gariboldi, Elisabetta & Li, Yanwen, 2023. "Computational models of effective thermal conductivity for periodic porous media for all volume fractions and conductivity ratios," Applied Energy, Elsevier, vol. 349(C).
    2. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jana Shafi & Mikhail Sheremet & Mehdi Fteiti & Abdulkafi Mohammed Saeed & Mohammad Ghalambaz, 2023. "Computational Study of Phase Change Heat Transfer and Latent Heat Energy Storage for Thermal Management of Electronic Components Using Neural Networks," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    2. Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Aramesh, M. & Shabani, B., 2022. "Metal foam-phase change material composites for thermal energy storage: A review of performance parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Cui, Wei & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Combined effects of nanoparticles and ultrasonic field on thermal energy storage performance of phase change materials with metal foam," Applied Energy, Elsevier, vol. 309(C).
    6. Wang, Zhifeng & Wu, Jiani & Lei, Dongqiang & Liu, Hong & Li, Jinping & Wu, Zhiyong, 2020. "Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application," Applied Energy, Elsevier, vol. 261(C).
    7. Dai, Renkun & Li, Wei & Mostaghimi, Javad & Wang, Qiuwang & Zeng, Min, 2020. "On the optimal heat source location of partially heated energy storage process using the newly developed simplified enthalpy based lattice Boltzmann method," Applied Energy, Elsevier, vol. 275(C).
    8. Zhang, Shengqi & Pu, Liang & Mancin, Simone & Ma, Zhenjun & Xu, Lingling, 2022. "Experimental study on heat transfer characteristics of metal foam/paraffin composite PCMs in large cavities: Effects of material types and heating configurations," Applied Energy, Elsevier, vol. 325(C).
    9. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Zhang, Shuai & Yan, Yuying, 2023. "Evaluation and optimisation of hybrid sensible-latent heat thermal energy storage unit with natural stones to enhance heat transfer," Renewable Energy, Elsevier, vol. 215(C).
    11. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    12. Li, Xinyi & Niu, Cong & Li, Xiangxuan & Ma, Ting & Lu, Lin & Wang, Qiuwang, 2020. "Pore-scale investigation on effects of void cavity distribution on melting of composite phase change materials," Applied Energy, Elsevier, vol. 275(C).
    13. Ewelina Radomska & Lukasz Mika & Karol Sztekler, 2020. "The Impact of Additives on the Main Properties of Phase Change Materials," Energies, MDPI, vol. 13(12), pages 1-34, June.
    14. Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
    15. Nassima Radouane, 2022. "A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications," Energies, MDPI, vol. 15(21), pages 1-28, November.
    16. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    17. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    18. Qian, Tingting & Li, Jinhong & Min, Xin & Deng, Yong & Guan, Weimin & Ma, Hongwen, 2015. "Polyethylene glycol/mesoporous calcium silicate shape-stabilized composite phase change material: Preparation, characterization, and adjustable thermal property," Energy, Elsevier, vol. 82(C), pages 333-340.
    19. Xu, Biwan & Ma, Hongyan & Lu, Zeyu & Li, Zongjin, 2015. "Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites," Applied Energy, Elsevier, vol. 160(C), pages 358-367.
    20. Zhu, Xiao & Han, Liang & Lu, Yunfeng & Wei, Fei & Jia, Xilai, 2019. "Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:171:y:2023:i:c:s1364032122008917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.