IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v315y2022ics0306261922004329.html
   My bibliography  Save this article

Novel mathematical modeling, performance analysis, and design charts for the typical hybrid photovoltaic/phase-change material (PV/PCM) system

Author

Listed:
  • Taqi Al-Najjar, Hussein M.
  • Mahdi, Jasim M.

Abstract

As a type of hybrid PV/T solar collector, the PV/PCM system is typically used to produce and store both electrical and thermal energy in a variety of applications. Specialized computational-fluid-dynamic (CFD) models such as Ansys FLUENT and COMSOL are currently used to simulate the operation of these systems. However, the relatively long computation time of these models, which can range from a few hours to a few days for even simple system variables, poses a challenge. Therefore, the effort in this study has been devoted to developing an alternative mathematical model for PV/PCM systems that is sufficiently accurate, fast to compute, and simple to use. The proposed model is based on an exact five-parameter photovoltaic model coupled with a well-established photovoltaic/thermal network. The overall heat transfer coefficient of the thermal component (PCM) within the system's network is determined using two novel formulas in relation to the PCM's average temperature across its solid, melting, and liquid phases. The proposed model was implemented in MATLAB as a code that utilizes straightforward numerical functions without the use of mesh patterns. The model was then validated via both CFD and experimental verification. The results indicated that the model is reasonably accurate in terms of percentage errors and correlation coefficients. The model's computation time for system temperatures and PV power is less than 14 s, with a total simulation time of 2.2 h at a time step of 2.5 min, compared to 16 h for CFD. Thus, the developed model can substantially help in conducting comprehensive investigations of PV/PCM performance characteristics, parametric analyses, and design charts using a diverse range of system variables. Two performance indexes for the PV/PCM system were introduced: the PCM melting time interval and thermal efficiency. It was found that the PCM performs better in its upper layer, and this layer, which accounts for only about 5%–6% of the total PCM thickness, primarily governs the aforementioned performance indexes as well as the overall heat transfer coefficients. The melting time interval was found to increase linearly with PCM thickness, whereas the thermal efficiency increases logarithmically with incident solar radiation, with greater rates at lower solar radiation levels. However, over the three phases, the PV efficiency varies within a narrow range of 15.5–17.3%. The parametric analyses showed that thermal efficiency increases approximately fivefold as ambient temperature increases from 0 to 35 °C, but decreases by 55% as wind speed increases from 0 to 4 m/s.

Suggested Citation

  • Taqi Al-Najjar, Hussein M. & Mahdi, Jasim M., 2022. "Novel mathematical modeling, performance analysis, and design charts for the typical hybrid photovoltaic/phase-change material (PV/PCM) system," Applied Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:appene:v:315:y:2022:i:c:s0306261922004329
    DOI: 10.1016/j.apenergy.2022.119027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922004329
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herrando, María & Markides, Christos N. & Hellgardt, Klaus, 2014. "A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance," Applied Energy, Elsevier, vol. 122(C), pages 288-309.
    2. Boumaaraf, Billel & Touafek, Khaled & Ait-cheikh, Mohamed Salah & Slimani, Mohamed El Amine, 2020. "Comparison of electrical and thermal performance evaluation of a classical PV generator and a water glazed hybrid photovoltaic–thermal collector," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 167(C), pages 176-193.
    3. Gholampour, Maysam & Ameri, Mehran, 2016. "Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study," Applied Energy, Elsevier, vol. 164(C), pages 837-856.
    4. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    5. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2021. "Theoretical design and experimental evaluation of a PV+PCM system in the mediterranean climate," Energy, Elsevier, vol. 220(C).
    6. Al-Waeli, Ali H.A. & Sopian, K. & Kazem, Hussein A. & Chaichan, Miqdam T., 2017. "Photovoltaic/Thermal (PV/T) systems: Status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 109-130.
    7. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
    8. Al-abidi, Abduljalil A. & Bin Mat, Sohif & Sopian, K. & Sulaiman, M.Y. & Mohammed, Abdulrahman Th., 2013. "CFD applications for latent heat thermal energy storage: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 353-363.
    9. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2018. "Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins," Applied Energy, Elsevier, vol. 211(C), pages 975-986.
    10. Amori, Karima E. & Taqi Al-Najjar, Hussein M., 2012. "Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq," Applied Energy, Elsevier, vol. 98(C), pages 384-395.
    11. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    13. Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
    14. Khanna, Sourav & Reddy, K.S. & Mallick, Tapas K., 2017. "Performance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions," Energy, Elsevier, vol. 133(C), pages 887-899.
    15. Yazdanifard, Farideh & Ebrahimnia-Bajestan, Ehsan & Ameri, Mehran, 2016. "Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime," Renewable Energy, Elsevier, vol. 99(C), pages 295-306.
    16. Ma, Tao & Yang, Hongxing & Zhang, Yinping & Lu, Lin & Wang, Xin, 2015. "Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1273-1284.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Özşimşek, Atılgan Onurcan & Omar, Muhammed Arslan, 2024. "A numerical study on the effect of employing porous medium on thermal performance of a PV/T system," Renewable Energy, Elsevier, vol. 226(C).
    2. Fang, Juan & Dong, Hao & Huo, Hailong & Yi, Xiaoping & Wen, Zhi & Liu, Qibin & Liu, Xunliang, 2023. "Thermodynamic performance of solar full-spectrum electricity generation system integrating photovoltaic cell with thermally-regenerative ammonia battery," Applied Energy, Elsevier, vol. 332(C).
    3. Jesus Fernando Hinojosa & Saul Fernando Moreno & Victor Manuel Maytorena, 2023. "Low-Temperature Applications of Phase Change Materials for Energy Storage: A Descriptive Review," Energies, MDPI, vol. 16(7), pages 1-39, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    3. Kazemian, Arash & Salari, Ali & Hakkaki-Fard, Ali & Ma, Tao, 2019. "Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material," Applied Energy, Elsevier, vol. 238(C), pages 734-746.
    4. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2021. "Theoretical design and experimental evaluation of a PV+PCM system in the mediterranean climate," Energy, Elsevier, vol. 220(C).
    5. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. B, Prabhu & A, Valan Arasu & P, Gurusamy & A, Amala Mithin Minther Singh & T, Arunkumar, 2024. "Solar photovoltaic cooling using Paraffin phase change material: Comprehensive assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    7. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    8. Kazemian, Arash & Khatibi, Meysam & Reza Maadi, Seyed & Ma, Tao, 2021. "Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material," Applied Energy, Elsevier, vol. 295(C).
    9. Ben Seddik, Z. & Ben Taher, M.A. & Laknizi, A. & Ahachad, M. & Bahraoui, F. & Mahdaoui, M., 2022. "Hybridization of Taguchi method and genetic algorithm to optimize a PVT in different Moroccan climatic zones," Energy, Elsevier, vol. 250(C).
    10. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    11. Zhao, Yang & Wang, Ranxu & Gao, Dan & Chen, Haiping & Zhang, Heng, 2024. "Numerical investigation and optimization of a multi-stage Tesla-valve channel based photovoltaic/thermal module," Renewable Energy, Elsevier, vol. 228(C).
    12. Zhao, Jiaxin & Ma, Tao & Li, Zhenpeng & Song, Aotian, 2019. "Year-round performance analysis of a photovoltaic panel coupled with phase change material," Applied Energy, Elsevier, vol. 245(C), pages 51-64.
    13. Tariq, Rasikh & Xamán, J. & Bassam, A. & Ricalde, Luis J. & Soberanis, M.A. Escalante, 2020. "Multidimensional assessment of a photovoltaic air collector integrated phase changing material considering Mexican climatic conditions," Energy, Elsevier, vol. 209(C).
    14. Hwi-Ung Choi & Kwang-Hwan Choi, 2022. "Performance Evaluation of PVT Air Collector Coupled with a Triangular Block in Actual Climate Conditions in Korea," Energies, MDPI, vol. 15(11), pages 1-12, June.
    15. Yazdanifard, Farideh & Ameri, Mehran, 2018. "Exergetic advancement of photovoltaic/thermal systems (PV/T): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 529-553.
    16. Adibpour, S. & Raisi, A. & Ghasemi, B. & Sajadi, A.R. & Rosengarten, G., 2021. "Experimental investigation of the performance of a sun tracking photovoltaic panel with Phase Change Material," Renewable Energy, Elsevier, vol. 165(P1), pages 321-333.
    17. abbas, Sajid & Yuan, Yanping & Hassan, Atazaz & Zhou, Jinzhi & Zeng, Chao & Yu, Min & Emmanuel, Bisengimana, 2022. "Experimental and numerical investigation on a solar direct-expansion heat pump system employing PV/T & solar thermal collector as evaporator," Energy, Elsevier, vol. 254(PB).
    18. Zhang, Chenyu & Wang, Ning & Xu, Hongtao & Fang, Yuan & Yang, Qiguo & Talkhoncheh, Fariborz Karimi, 2023. "Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins," Energy, Elsevier, vol. 263(PA).
    19. Mohammadpour, Javad & Salehi, Fatemeh & Sheikholeslami, Mohsen & Lee, Ann, 2022. "A computational study on nanofluid impingement jets in thermal management of photovoltaic panel," Renewable Energy, Elsevier, vol. 189(C), pages 970-982.
    20. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:315:y:2022:i:c:s0306261922004329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.