IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v164y2016icp837-856.html
   My bibliography  Save this article

Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study

Author

Listed:
  • Gholampour, Maysam
  • Ameri, Mehran

Abstract

PV/Thermal flat transpired plate is a kind of air-based hybrid Photovoltaic/Thermal (PV/T) system concurrently producing both thermal and electrical energy. In order to develop a predictive model, validate, and investigate the PV/Thermal flat transpired plate capabilities, a prototype was fabricated and tested under outdoor conditions at Shahid Bahonar University of Kerman in Kerman, Iran. In order to develop a mathematical model, correlations for Nusselt numbers for PV panel and transpired plate were derived using CFD technique. Good agreement was obtained between measured and simulated values, with the maximum relative root mean square percent deviation (RMSE) being 9.13% and minimum correlation coefficient (R-squared) 0.92. Based on the critical radiation level defined in terms of the actual exergy gain, it was found that with proper fan and MPPT devices, there is no concern about the critical radiation level. To provide a guideline for designers, using equivalent thermal efficiency as an appropriate tool, optimum values for suction velocity and PV coverage percent under different conditions were obtained.

Suggested Citation

  • Gholampour, Maysam & Ameri, Mehran, 2016. "Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study," Applied Energy, Elsevier, vol. 164(C), pages 837-856.
  • Handle: RePEc:eee:appene:v:164:y:2016:i:c:p:837-856
    DOI: 10.1016/j.apenergy.2015.12.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915016153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.12.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agrawal, Basant & Tiwari, G.N., 2010. "Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions," Applied Energy, Elsevier, vol. 87(2), pages 417-426, February.
    2. Kaiser, A.S. & Zamora, B. & Mazón, R. & García, J.R. & Vera, F., 2014. "Experimental study of cooling BIPV modules by forced convection in the air channel," Applied Energy, Elsevier, vol. 135(C), pages 88-97.
    3. Chow, T.T. & Chan, A.L.S. & Fong, K.F. & Lin, Z. & He, W. & Ji, J., 2009. "Annual performance of building-integrated photovoltaic/water-heating system for warm climate application," Applied Energy, Elsevier, vol. 86(5), pages 689-696, May.
    4. Hollick, J.C., 1994. "Unglazed solar wall air heaters," Renewable Energy, Elsevier, vol. 5(1), pages 415-421.
    5. Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & Ji, J., 2009. "Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover," Applied Energy, Elsevier, vol. 86(3), pages 310-316, March.
    6. Pathak, M.J.M. & Sanders, P.G. & Pearce, J.M., 2014. "Optimizing limited solar roof access by exergy analysis of solar thermal, photovoltaic, and hybrid photovoltaic thermal systems," Applied Energy, Elsevier, vol. 120(C), pages 115-124.
    7. He, Wei & Chow, Tin-Tai & Ji, Jie & Lu, Jianping & Pei, Gang & Chan, Lok-shun, 2006. "Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water," Applied Energy, Elsevier, vol. 83(3), pages 199-210, March.
    8. Zogou, Olympia & Stapountzis, Herricos, 2012. "Flow and heat transfer inside a PV/T collector for building application," Applied Energy, Elsevier, vol. 91(1), pages 103-115.
    9. Rozario, Joseph & Pearce, Joshua M., 2015. "Optimization of annealing cycles for electric output in outdoor conditions for amorphous silicon photovoltaic–thermal systems," Applied Energy, Elsevier, vol. 148(C), pages 134-141.
    10. Fine, J.P. & Friedman, J. & Dworkin, S.B., 2015. "Transient analysis of a photovoltaic thermal heat input process with thermal storage," Applied Energy, Elsevier, vol. 160(C), pages 308-320.
    11. Sohel, M. Imroz & Ma, Zhenjun & Cooper, Paul & Adams, Jamie & Scott, Robert, 2014. "A dynamic model for air-based photovoltaic thermal systems working under real operating conditions," Applied Energy, Elsevier, vol. 132(C), pages 216-225.
    12. Hollick, J.C., 1998. "Solar cogeneration panels," Renewable Energy, Elsevier, vol. 15(1), pages 195-200.
    13. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Ma, Tao, 2015. "Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes," Applied Energy, Elsevier, vol. 138(C), pages 572-583.
    14. Yang, Tingting & Athienitis, Andreas K., 2015. "Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system," Applied Energy, Elsevier, vol. 159(C), pages 70-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chenyu & Wang, Ning & Xu, Hongtao & Fang, Yuan & Yang, Qiguo & Talkhoncheh, Fariborz Karimi, 2023. "Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins," Energy, Elsevier, vol. 263(PA).
    2. Yazdanifard, Farideh & Ameri, Mehran, 2018. "Exergetic advancement of photovoltaic/thermal systems (PV/T): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 529-553.
    3. He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
    4. Aloys Martial Ekoe A Akata & Donatien Njomo & Basant Agrawal & Auguste Mackpayen & Abdel-Hamid Mahamat Ali, 2022. "Tilt Angle and Orientation Assessment of Photovoltaic Thermal (PVT) System for Sub-Saharan Tropical Regions: Case Study Douala, Cameroon," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    5. He, Y. & Tao, Y.B. & Zhao, C.Y. & Yu, X.K., 2022. "Structure parameter analysis and optimization of photovoltaic-phase change material-thermoelectric coupling system under space conditions," Renewable Energy, Elsevier, vol. 200(C), pages 320-333.
    6. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    7. Al-damook, Amer & Khalil, Wissam Hashim, 2017. "Experimental evaluation of an unglazed solar air collector for building space heating in Iraq," Renewable Energy, Elsevier, vol. 112(C), pages 498-509.
    8. Hooshmandzade, Niusha & Motevali, Ali & Reza Mousavi Seyedi, Seyed & Biparva, Pouria, 2021. "Influence of single and hybrid water-based nanofluids on performance of microgrid photovoltaic/thermal system," Applied Energy, Elsevier, vol. 304(C).
    9. Ren, Xiao & Li, Jing & Jiao, Dongsheng & Gao, Datong & Pei, Gang, 2020. "Temperature-dependent performance of amorphous silicon photovoltaic/thermal systems in the long term operation," Applied Energy, Elsevier, vol. 275(C).
    10. Zhang, Chenyu & Wang, Ning & Yang, Qiguo & Xu, Hongtao & Qu, Zhiguo & Fang, Yuan, 2022. "Energy and exergy analysis of a switchable solar photovoltaic/thermal-phase change material system with thermal regulation strategies," Renewable Energy, Elsevier, vol. 196(C), pages 1392-1405.
    11. Li, Wenjia & Ling, Yunyi & Liu, Xiangxin & Hao, Yong, 2017. "Performance analysis of a photovoltaic-thermochemical hybrid system prototype," Applied Energy, Elsevier, vol. 204(C), pages 939-947.
    12. Wang, Yang & Shukla, Ashish & Liu, Shuli, 2017. "A state of art review on methodologies for heat transfer and energy flow characteristics of the active building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1102-1116.
    13. Bayrak, Fatih & Abu-Hamdeh, Nidal & Alnefaie, Khaled A. & Öztop, Hakan F., 2017. "A review on exergy analysis of solar electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 755-770.
    14. Nazri, Nurul Syakirah & Fudholi, Ahmad & Mustafa, Wan & Yen, Chan Hoy & Mohammad, Masita & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2019. "Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 132-144.
    15. Ren, Xiao & Li, Jing & Gao, Datong & Wu, Lijun & Pei, Gang, 2021. "Analysis of a novel photovoltaic/thermal system using InGaN/GaN MQWs cells in high temperature applications," Renewable Energy, Elsevier, vol. 168(C), pages 11-20.
    16. Vittorini, Diego & Cipollone, Roberto, 2019. "Fin-cooled photovoltaic module modeling – Performances mapping and electric efficiency assessment under real operating conditions," Energy, Elsevier, vol. 167(C), pages 159-167.
    17. Taqi Al-Najjar, Hussein M. & Mahdi, Jasim M., 2022. "Novel mathematical modeling, performance analysis, and design charts for the typical hybrid photovoltaic/phase-change material (PV/PCM) system," Applied Energy, Elsevier, vol. 315(C).
    18. Fudholi, Ahmad & Zohri, Muhammad & Rukman, Nurul Shahirah Binti & Nazri, Nurul Syakirah & Mustapha, Muslizainun & Yen, Chan Hoy & Mohammad, Masita & Sopian, Kamaruzzaman, 2019. "Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 44-51.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    2. Tomar, Vivek & Norton, Brian & Tiwari, G.N., 2019. "A novel approach towards investigating the performance of different PVT configurations integrated on test cells: An experimental study," Renewable Energy, Elsevier, vol. 137(C), pages 93-108.
    3. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2016. "BIPVT systems for residential applications: An energy and economic analysis for European climates," Applied Energy, Elsevier, vol. 184(C), pages 1411-1431.
    4. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2019. "Transient analysis, exergy and thermo-economic modelling of façade integrated photovoltaic/thermal solar collectors," Renewable Energy, Elsevier, vol. 137(C), pages 109-126.
    6. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    8. del Amo, Alejandro & Martínez-Gracia, Amaya & Bayod-Rújula, Angel A. & Antoñanzas, Javier, 2017. "An innovative urban energy system constituted by a photovoltaic/thermal hybrid solar installation: Design, simulation and monitoring," Applied Energy, Elsevier, vol. 186(P2), pages 140-151.
    9. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    10. Athienitis, Andreas K. & Barone, Giovanni & Buonomano, Annamaria & Palombo, Adolfo, 2018. "Assessing active and passive effects of façade building integrated photovoltaics/thermal systems: Dynamic modelling and simulation," Applied Energy, Elsevier, vol. 209(C), pages 355-382.
    11. Chen, Fangliang & Yin, Huiming, 2016. "Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel," Applied Energy, Elsevier, vol. 177(C), pages 271-284.
    12. Dehra, Himanshu, 2017. "An investigation on energy performance assessment of a photovoltaic solar wall under buoyancy-induced and fan-assisted ventilation system," Applied Energy, Elsevier, vol. 191(C), pages 55-74.
    13. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    14. Arkar, C. & Žižak, T. & Domjan, S. & Medved, S., 2020. "Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts," Applied Energy, Elsevier, vol. 280(C).
    15. Al-Shamani, Ali Najah & Yazdi, Mohammad H. & Alghoul, M.A. & Abed, Azher M. & Ruslan, M.H. & Mat, Sohif & Sopian, K., 2014. "Nanofluids for improved efficiency in cooling solar collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 348-367.
    16. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.
    17. Gaur, Ankita & Tiwari, G.N., 2014. "Performance of a-Si thin film PV modules with and without water flow: An experimental validation," Applied Energy, Elsevier, vol. 128(C), pages 184-191.
    18. Yang, Tingting & Athienitis, Andreas K., 2015. "Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system," Applied Energy, Elsevier, vol. 159(C), pages 70-79.
    19. Zhao, Bin & Hu, Mingke & Ao, Xianze & Pei, Gang, 2017. "Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China," Applied Energy, Elsevier, vol. 205(C), pages 626-634.
    20. Tripathy, M. & Yadav, S. & Panda, S.K. & Sadhu, P.K., 2017. "Performance of building integrated photovoltaic thermal systems for the panels installed at optimum tilt angle," Renewable Energy, Elsevier, vol. 113(C), pages 1056-1069.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:164:y:2016:i:c:p:837-856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.