IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v5y1994i1p415-421.html
   My bibliography  Save this article

Unglazed solar wall air heaters

Author

Listed:
  • Hollick, J.C.

Abstract

The new unglazed wall mounted solar air heating panels have become the preferred method of heating air using solar energy in cold climates. Since 1989 numerous systems have been installed on a wide range of applications and in several countries. Monitoring work under IEA Task 14 on a few of the solar wall heating systems has revealed interesting results and that the unglazed panels outperform the traditional glazed solar panels and at lower capital costs. The panels which have the trade name SOLARWALL® are built from conventional building cladding material, look like a typical metal wall and can be any dark colour. This paper will summarize some of the work to date, examples of applications, monitoring results, new developments and provide insight as to why this technology has the potential to revolutionize building construction in the future.

Suggested Citation

  • Hollick, J.C., 1994. "Unglazed solar wall air heaters," Renewable Energy, Elsevier, vol. 5(1), pages 415-421.
  • Handle: RePEc:eee:renene:v:5:y:1994:i:1:p:415-421
    DOI: 10.1016/0960-1481(94)90408-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0960148194904081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0960-1481(94)90408-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peci, F. & Comino, F. & Ruiz de Adana, M., 2018. "Performance of an unglazed transpire collector in the facade of a building for heating and cooling in combination with a desiccant evaporative cooler," Renewable Energy, Elsevier, vol. 122(C), pages 460-471.
    2. Gholampour, Maysam & Ameri, Mehran, 2016. "Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study," Applied Energy, Elsevier, vol. 164(C), pages 837-856.
    3. Chan, Hoy-Yen & Riffat, Saffa B. & Zhu, Jie, 2010. "Review of passive solar heating and cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 781-789, February.
    4. Boutin, Yanik & Gosselin, Louis, 2009. "Optimal mixed convection for maximal energy recovery with vertical porous channel (solar wall)," Renewable Energy, Elsevier, vol. 34(12), pages 2714-2721.
    5. Paya-Marin, Miguel A. & Roy, Krishanu & Chen, Jian-Fei & Masood, Rehan & Lawson, R. Mark & Gupta, Bhaskar Sen & Lim, James B.P., 2020. "Large-scale experiment of a novel non-domestic building using BPSC systems for energy saving," Renewable Energy, Elsevier, vol. 152(C), pages 799-811.
    6. Ben-Amara, Mahmoud & Houcine, Imed & Guizani, Aman-Allah & Maalej, Mohammed, 2005. "Efficiency investigation of a new-design air solar plate collector used in a humidification–dehumidification desalination process," Renewable Energy, Elsevier, vol. 30(9), pages 1309-1327.
    7. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Poole, Mark R. & Shah, Sanjay B. & Boyette, Michael D. & Grimes, Jesse L. & Stikeleather, Larry F., 2018. "Evaluation of landscape fabric as a solar air heater," Renewable Energy, Elsevier, vol. 127(C), pages 998-1003.
    9. Shen, Jingchun & Zhang, Xingxing & Yang, Tong & Tang, Llewellyn & Cheshmehzangi, Ali & Wu, Yupeng & Huang, Guiqin & Zhong, Dan & Xu, Peng & Liu, Shengchun, 2016. "Characteristic study of a novel compact Solar Thermal Facade (STF) with internally extruded pin–fin flow channel for building integration," Applied Energy, Elsevier, vol. 168(C), pages 48-64.
    10. Peci López, F. & Ruiz de Adana Santiago, M., 2015. "Sensitivity study of an opaque ventilated façade in the winter season in different climate zones in Spain," Renewable Energy, Elsevier, vol. 75(C), pages 524-533.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:5:y:1994:i:1:p:415-421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.