IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920312551.html
   My bibliography  Save this article

From hot rock to useful energy: A global estimate of enhanced geothermal systems potential

Author

Listed:
  • Aghahosseini, Arman
  • Breyer, Christian

Abstract

This study demonstrates the theoretical, technical, optimal economic and sustainable potential of enhanced geothermal systems (EGS) globally. A global estimate of EGS is presented in a 1°×1° spatial resolution. Constructed temperature at depth maps are computed for every 1 km thick layer, from 1 to 10 km. Multiple factors such as surface heat flow, thermal conductivity, radioactive heat production, and surface temperature are involved, and obtained from various sources and assumptions. The global EGS theoretical potential is assessed. Available heat content is then estimated using technical constraints for the temperature equal to or higher than 150 °C for any 1 km depth, and presented as thermal energy and electrical power capacity. The EGS optimal economic potential is derived from the optimum depth and the corresponding minimum levelised cost of electricity. The global optimal economic potential in terms of power capacity is found to be about 6 and 108 TWe for the cost years of 2030 and 2050, respectively. If economic and water stress constraints are excluded, the global EGS potential can be as much as 200 TWe. Further, an industrial cost curve is developed for the levelised cost of electricity as a function of EGS technical power capacity. The findings indicate that around 4600 GWe of EGS capacity can be built at a cost of 50 €/MWh or lower. A method is applied to measure the sustainable geothermal resource base. The obtained sustainable potential is found to be 256 GWe in 2050. Results are presented on a country basis and globally.

Suggested Citation

  • Aghahosseini, Arman & Breyer, Christian, 2020. "From hot rock to useful energy: A global estimate of enhanced geothermal systems potential," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312551
    DOI: 10.1016/j.apenergy.2020.115769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920312551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019. "Radical transformation pathway towards sustainable electricity via evolutionary steps," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    2. Chamorro, César R. & García-Cuesta, José L. & Mondéjar, María E. & Linares, María M., 2014. "An estimation of the enhanced geothermal systems potential for the Iberian Peninsula," Renewable Energy, Elsevier, vol. 66(C), pages 1-14.
    3. M. & von. Hauff(hauff@wiwi.uni-kl.de), 2015. "Requirements for the Sustainable Development of Industrial Areas," Journal "Region: Economics and Sociology", Institute of Economics and Industrial Engineering of Siberian Branch of RAS, vol. 3.
    4. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    5. Jean-Marc Roda & Maxime Goralski & Anthony Benoist & Anaphel Baptiste & Valentine Boudjema & Theodoros Galanos & Marine Georget & Jean-Eudes Hévin & Simon Lavergne & Frédéric Eychenne & Kan Ern Liew &, 2015. "Sustainability of biojet-fuel in Malaysia," Selected Books, CIRAD, Forest department, UPR40, edition 1, volume 1, number 17 edited by Jean-Marc Roda.
    6. Shortall, Ruth & Davidsdottir, Brynhildur & Axelsson, Guðni, 2015. "Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 391-406.
    7. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    8. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    9. Gerber, Léda & Maréchal, François, 2012. "Environomic optimal configurations of geothermal energy conversion systems: Application to the future construction of Enhanced Geothermal Systems in Switzerland," Energy, Elsevier, vol. 45(1), pages 908-923.
    10. Jacobson, Mark Z. & Delucchi, Mark A. & Cameron, Mary A. & Mathiesen, Brian V., 2018. "Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes," Renewable Energy, Elsevier, vol. 123(C), pages 236-248.
    11. Thorsteinsson, Hildigunnur H. & Tester, Jefferson W., 2010. "Barriers and enablers to geothermal district heating system development in the United States," Energy Policy, Elsevier, vol. 38(2), pages 803-813, February.
    12. Xia, Liangyu & Zhang, Yabo, 2019. "An overview of world geothermal power generation and a case study on China—The resource and market perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 411-423.
    13. Mignan, A. & Karvounis, D. & Broccardo, M. & Wiemer, S. & Giardini, D., 2019. "Including seismic risk mitigation measures into the Levelized Cost Of Electricity in enhanced geothermal systems for optimal siting," Applied Energy, Elsevier, vol. 238(C), pages 831-850.
    14. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    15. Chamorro, César R. & García-Cuesta, José L. & Mondéjar, María E. & Pérez-Madrazo, Alfonso, 2014. "Enhanced geothermal systems in Europe: An estimation and comparison of the technical and sustainable potentials," Energy, Elsevier, vol. 65(C), pages 250-263.
    16. Unknown, 2015. "Towards A Sustainable Soil Fertility Strategy in Ghana," Miscellaneous Publications 212898, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    17. Unescap-Sswa, 2015. "Enhancing the sustainability of development," SSWA Policy Briefs 0005, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) South and South-West Asia Office.
    18. Niklas Potrafke & Markus Reischmann, 2015. "Fiscal Transfers and Fiscal Sustainability," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(5), pages 975-1005, August.
    19. Lee, Youngmin & Park, Sungho & Kim, Jongchan & Kim, Hyoung Chan & Koo, Min-Ho, 2010. "Geothermal resource assessment in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2392-2400, October.
    20. Hofmann, Hannes & Weides, Simon & Babadagli, Tayfun & Zimmermann, Günter & Moeck, Inga & Majorowicz, Jacek & Unsworth, Martyn, 2014. "Potential for enhanced geothermal systems in Alberta, Canada," Energy, Elsevier, vol. 69(C), pages 578-591.
    21. Noah Kittner & Felix Lill & Daniel M. Kammen, 2017. "Energy storage deployment and innovation for the clean energy transition," Nature Energy, Nature, vol. 2(9), pages 1-6, September.
    22. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sigurjónsson, Hafþór Ægir & Cook, David & Davíðsdóttir, Brynhildur & Bogason, Sigurður G., 2021. "A life-cycle analysis of deep enhanced geothermal systems – The case studies of Reykjanes, Iceland and Vendenheim, France," Renewable Energy, Elsevier, vol. 177(C), pages 1076-1086.
    2. Ashish Gulagi & Manish Ram & Dmitrii Bogdanov & Sandeep Sarin & Theophilus Nii Odai Mensah & Christian Breyer, 2022. "The role of renewables for rapid transitioning of the power sector across states in India," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Eyerer, Sebastian & Dawo, Fabian & Schifflechner, Christopher & Niederdränk, Anne & Spliethoff, Hartmut & Wieland, Christoph, 2022. "Experimental evaluation of an ORC-CHP architecture based on regenerative preheating for geothermal applications," Applied Energy, Elsevier, vol. 315(C).
    4. Yapeng Ren & Xinli Lu & Wei Zhang & Jiaqi Zhang & Jiali Liu & Feng Ma & Zhiwei Cui & Hao Yu & Tianji Zhu & Yalin Zhang, 2022. "Preliminary Study on Optimization of a Geothermal Heating System Coupled with Energy Storage for Office Building Heating in North China," Energies, MDPI, vol. 15(23), pages 1-23, November.
    5. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    6. Xu, Jianwei & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying, 2023. "Techno-economic-environmental analysis of direct-contact membrane distillation systems integrated with low-grade heat sources: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 349(C).
    7. Santos, L. & Dahi Taleghani, A. & Elsworth, D., 2022. "Repurposing abandoned wells for geothermal energy: Current status and future prospects," Renewable Energy, Elsevier, vol. 194(C), pages 1288-1302.
    8. Ajay Gambhir & Shivika Mittal & Robin D. Lamboll & Neil Grant & Dan Bernie & Laila Gohar & Adam Hawkes & Alexandre Köberle & Joeri Rogelj & Jason A. Lowe, 2023. "Adjusting 1.5 degree C climate change mitigation pathways in light of adverse new information," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Zhang, Bo & Guo, Tiankui & Qu, Zhanqing & Wang, Jiwei & Chen, Ming & Liu, Xiaoqiang, 2023. "Numerical simulation of fracture propagation and production performance in a fractured geothermal reservoir using a 2D FEM-based THMD coupling model," Energy, Elsevier, vol. 273(C).
    10. Aghahosseini, Arman & Solomon, A.A. & Breyer, Christian & Pregger, Thomas & Simon, Sonja & Strachan, Peter & Jäger-Waldau, Arnulf, 2023. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness," Applied Energy, Elsevier, vol. 331(C).
    11. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    12. Agnieszka Operacz & Agnieszka Zachora-Buławska & Izabela Strzelecka & Mariusz Buda & Bogusław Bielec & Karolina Migdał & Tomasz Operacz, 2022. "The Standard Geothermal Plant as an Innovative Combined Renewable Energy Resources System: The Case from South Poland," Energies, MDPI, vol. 15(17), pages 1-23, September.
    13. Guo, Tiankui & Hao, Tong & Chen, Ming & Zhang, Yuelong & Qu, Zhanqing & Jia, Xuliang & Zhang, Wei & Yu, Haiyang, 2023. "Numerical simulation on Geothermal extraction by radial well assisted hydraulic fracturing," Renewable Energy, Elsevier, vol. 210(C), pages 440-450.
    14. ElSayed, Mai & Aghahosseini, Arman & Caldera, Upeksha & Breyer, Christian, 2023. "Analysing the techno-economic impact of e-fuels and e-chemicals production for exports and carbon dioxide removal on the energy system of sunbelt countries – Case of Egypt," Applied Energy, Elsevier, vol. 343(C).
    15. ElSayed, Mai & Aghahosseini, Arman & Breyer, Christian, 2023. "High cost of slow energy transitions for emerging countries: On the case of Egypt's pathway options," Renewable Energy, Elsevier, vol. 210(C), pages 107-126.
    16. Xu, Tianfu & Liang, Xu & Xia, Yi & Jiang, Zhenjiao & Gherardi, Fabrizio, 2022. "Performance evaluation of the Habanero enhanced geothermal system, Australia: Optimization based on tracer and induced micro-seismicity data," Renewable Energy, Elsevier, vol. 181(C), pages 1197-1208.
    17. Liang, Xu & Xu, Tianfu & Chen, Jingyi & Jiang, Zhenjiao, 2023. "A deep-learning based model for fracture network characterization constrained by induced micro-seismicity and tracer test data in enhanced geothermal system," Renewable Energy, Elsevier, vol. 216(C).
    18. Kang, Fangchao & Jia, Tianrang & Li, Yingchun & Deng, Jianhui & Tang, Chun'an & Huang, Xin, 2021. "Experimental study on the physical and mechanical variations of hot granite under different cooling treatments," Renewable Energy, Elsevier, vol. 179(C), pages 1316-1328.
    19. Xia, Z.H. & Jia, G.S. & Ma, Z.D. & Wang, J.W. & Zhang, Y.P. & Jin, L.W., 2021. "Analysis of economy, thermal efficiency and environmental impact of geothermal heating system based on life cycle assessments," Applied Energy, Elsevier, vol. 303(C).
    20. Natanael Bolson & Maxim Yutkin & Tadeusz Patzek, 2023. "Primary Power Analysis of a Global Electrification Scenario," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    21. Wang, Ji-Xiang & Zhong, Mingliang & Wu, Zhe & Guo, Mengyue & Liang, Xin & Qi, Bo, 2022. "Ground-based investigation of a directional, flexible, and wireless concentrated solar energy transmission system," Applied Energy, Elsevier, vol. 322(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    2. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    4. Maëlle Tripon & Dorothée Boccanfuso & Marie-Eve Yergeau, 2020. "Agriculture urbaine, pratiques agricoles et impacts environnementaux et de santé publique," Cahiers de recherche 20-02, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    5. Song, Xiaoqing & Wang, Xiong & Hu, Shougeng & Xiao, Renbin & Scheffran, Jürgen, 2022. "Functional transition of cultivated ecosystems: Underlying mechanisms and policy implications in China," Land Use Policy, Elsevier, vol. 119(C).
    6. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    7. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    8. Oyewo, Ayobami Solomon & Aghahosseini, Arman & Ram, Manish & Breyer, Christian, 2020. "Transition towards decarbonised power systems and its socio-economic impacts in West Africa," Renewable Energy, Elsevier, vol. 154(C), pages 1092-1112.
    9. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    10. Zhang, Wei & Qu, Zhanqing & Guo, Tiankui & Wang, Zhiyuan, 2019. "Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress," Renewable Energy, Elsevier, vol. 143(C), pages 855-871.
    11. van der Zwaan, Bob & Kober, Tom & Longa, Francesco Dalla & van der Laan, Anouk & Jan Kramer, Gert, 2018. "An integrated assessment of pathways for low-carbon development in Africa," Energy Policy, Elsevier, vol. 117(C), pages 387-395.
    12. Bakhshi, Parul & Babulal, Ganesh M. & Trani, Jean-Francois, 2018. "Education and disability in a conflict affected context: Are children with disabilities less likely to learn and be protected in Darfur?," World Development, Elsevier, vol. 106(C), pages 248-259.
    13. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    14. Christian Breyer & Mahdi Fasihi & Arman Aghahosseini, 2020. "Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 43-65, January.
    15. My, Nguyen H.D. & Demont, Matty & Van Loo, Ellen J. & de Guia, Annalyn & Rutsaert, Pieter & Tuan, Tran Huu & Verbeke, Wim, 2018. "What is the value of sustainably-produced rice? Consumer evidence from experimental auctions in Vietnam," Food Policy, Elsevier, vol. 79(C), pages 283-296.
    16. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    17. Baek, Haein & Chung, Ji-Bum & Yun, Gi Woong, 2021. "Differences in public perceptions of geothermal energy based on EGS technology in Korea after the Pohang earthquake: National vs. local," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    18. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Liu, Xuemei & Liu, Hongliang, 2020. "Analysis on the heat extraction performance of multi-well injection enhanced geothermal system based on leaf-like bifurcated fracture networks," Energy, Elsevier, vol. 213(C).
    19. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    20. Boräng, Frida & Jagers, Sverker C. & Povitkina, Marina, 2016. "Political determinants of electricity provision in small island developing states," Energy Policy, Elsevier, vol. 98(C), pages 725-734.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.