IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920312538.html
   My bibliography  Save this article

Precursor salts influence in Ruthenium catalysts for CO2 hydrogenation to methane

Author

Listed:
  • Renda, Simona
  • Ricca, Antonio
  • Palma, Vincenzo

Abstract

The intermittency in power generation that characterizes renewable energy sources requires a way to convert the energy surplus. Among all the possibilities, the conversion of power in hydrogen via water electrolysis and then into methane via CO2 methanation represents a competitive storage system. CO2 methanation is an exothermic reaction which requires the use of low temperatures in order to achieve sufficiently high conversions: for this reason, there is a strong need in low-temperature active catalyst. In this work, several Ru/CeO2-ZrO2 and Ru-Ni/CeO2-ZrO2 were prepared and compared with Ni/CeO2-ZrO2, in order to evaluate the effect of Ru loading and Ru precursor salt. The results showed that in monometallic formulations the higher was the Ru amount the better were the reaction performances achieved, particularly at low temperatures. In bimetallic formulations, the presence of Ru enhances the catalyst activity; in particular, the use of the Ru acetylacetonate, for the deposition of the noble metal on support, remarkably reduces the catalyst onset temperature. The effect is due to the templating effect of the precursor molecule, which allows a better dispersion of the active compounds.

Suggested Citation

  • Renda, Simona & Ricca, Antonio & Palma, Vincenzo, 2020. "Precursor salts influence in Ruthenium catalysts for CO2 hydrogenation to methane," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312538
    DOI: 10.1016/j.apenergy.2020.115767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920312538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    2. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    3. Witte, Julia & Calbry-Muzyka, Adelaide & Wieseler, Tanja & Hottinger, Peter & Biollaz, Serge M.A. & Schildhauer, Tilman J., 2019. "Demonstrating direct methanation of real biogas in a fluidised bed reactor," Applied Energy, Elsevier, vol. 240(C), pages 359-371.
    4. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    5. Uebbing, Jennifer & Rihko-Struckmann, Liisa K. & Sundmacher, Kai, 2019. "Exergetic assessment of CO2 methanation processes for the chemical storage of renewable energies," Applied Energy, Elsevier, vol. 233, pages 271-282.
    6. Gorman, Will & Jarvis, Stephen & Callaway, Duncan, 2020. "Should I Stay Or Should I Go? The importance of electricity rate design for household defection from the power grid," Applied Energy, Elsevier, vol. 262(C).
    7. Ghaib, Karim & Ben-Fares, Fatima-Zahrae, 2018. "Power-to-Methane: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 433-446.
    8. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2012. "Assessment of utility energy storage options for increased renewable energy penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4141-4147.
    9. McDonagh, Shane & O'Shea, Richard & Wall, David M. & Deane, J.P. & Murphy, Jerry D., 2018. "Modelling of a power-to-gas system to predict the levelised cost of energy of an advanced renewable gaseous transport fuel," Applied Energy, Elsevier, vol. 215(C), pages 444-456.
    10. Maciel, Cristhiane Guimarães & Silva, Tatiana de Freitas & Assaf, Elisabete Moreira & Assaf, José Mansur, 2013. "Hydrogen production and purification from the water–gas shift reaction on CuO/CeO2–TiO2 catalysts," Applied Energy, Elsevier, vol. 112(C), pages 52-59.
    11. Stangeland, Kristian & Kalai, Dori Yosef & Li, Hailong & Yu, Zhixin, 2018. "Active and stable Ni based catalysts and processes for biogas upgrading: The effect of temperature and initial methane concentration on CO2 methanation," Applied Energy, Elsevier, vol. 227(C), pages 206-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soohyun Kim & Yunxia Yang & Renata Lippi & Hokyung Choi & Sangdo Kim & Donghyuk Chun & Hyuk Im & Sihyun Lee & Jiho Yoo, 2021. "Low-Rank Coal Supported Ni Catalysts for CO 2 Methanation," Energies, MDPI, vol. 14(8), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeanmonod, Guillaume & Wang, Ligang & Diethelm, Stefan & Maréchal, François & Van herle, Jan, 2019. "Trade-off designs of power-to-methane systems via solid-oxide electrolyzer and the application to biogas upgrading," Applied Energy, Elsevier, vol. 247(C), pages 572-581.
    2. Gorre, Jachin & Ruoss, Fabian & Karjunen, Hannu & Schaffert, Johannes & Tynjälä, Tero, 2020. "Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation," Applied Energy, Elsevier, vol. 257(C).
    3. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    4. Daraei, Mahsa & Campana, Pietro Elia & Thorin, Eva, 2020. "Power-to-hydrogen storage integrated with rooftop photovoltaic systems and combined heat and power plants," Applied Energy, Elsevier, vol. 276(C).
    5. Vecchi, Andrea & Naughton, James & Li, Yongliang & Mancarella, Pierluigi & Sciacovelli, Adriano, 2020. "Multi-mode operation of a Liquid Air Energy Storage (LAES) plant providing energy arbitrage and reserve services – Analysis of optimal scheduling and sizing through MILP modelling with integrated ther," Energy, Elsevier, vol. 200(C).
    6. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    7. Moioli, Emanuele & Mutschler, Robin & Züttel, Andreas, 2019. "Renewable energy storage via CO2 and H2 conversion to methane and methanol: Assessment for small scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 497-506.
    8. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    9. Sayed Ebrahim Hashemi & Kristian M. Lien & Magne Hillestad & Sondre K. Schnell & Bjørn Austbø, 2021. "Thermodynamic Insight in Design of Methanation Reactor with Water Removal Considering Nexus between CO 2 Conversion and Irreversibilities," Energies, MDPI, vol. 14(23), pages 1-21, November.
    10. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    11. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    12. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    13. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    14. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Witte, Julia & Calbry-Muzyka, Adelaide & Wieseler, Tanja & Hottinger, Peter & Biollaz, Serge M.A. & Schildhauer, Tilman J., 2019. "Demonstrating direct methanation of real biogas in a fluidised bed reactor," Applied Energy, Elsevier, vol. 240(C), pages 359-371.
    16. Linda Barelli & Gianni Bidini & Fabio Bonucci & Luca Castellini & Simone Castellini & Andrea Ottaviano & Dario Pelosi & Alberto Zuccari, 2018. "Dynamic Analysis of a Hybrid Energy Storage System (H-ESS) Coupled to a Photovoltaic (PV) Plant," Energies, MDPI, vol. 11(2), pages 1-23, February.
    17. Emmanouil, Stergios & Nikolopoulos, Efthymios I. & François, Baptiste & Brown, Casey & Anagnostou, Emmanouil N., 2021. "Evaluating existing water supply reservoirs as small-scale pumped hydroelectric storage options – A case study in Connecticut," Energy, Elsevier, vol. 226(C).
    18. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Hinz, Juri & Yee, Jeremy, 2018. "Optimal forward trading and battery control under renewable electricity generation," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 244-254.
    20. Zhang, Xiaojin & Bauer, Christian & Mutel, Christopher L. & Volkart, Kathrin, 2017. "Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications," Applied Energy, Elsevier, vol. 190(C), pages 326-338.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.