IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v272y2020ics0306261920307480.html
   My bibliography  Save this article

Barium aluminate improved iron ore for the chemical looping combustion of syngas

Author

Listed:
  • Wang, Haiming
  • Dou, Xiaomin
  • Veksha, Andrei
  • Liu, Wen
  • Giannis, Apostolos
  • Ge, Liya
  • Thye Lim, Teik
  • Lisak, Grzegorz

Abstract

Chemical looping combustion (CLC), as an advanced combustion technology, has attracted much attention because of its applicability to a variety of fuels and its ability to achieve inherent carbon capture. However, CLC of municipal solid waste (MSW) has been seldom reported. In this study, we investigated the CLC of simulated MSW-derived syngas using iron ore (IO)-based oxygen carriers (OCs). To enhance the redox activity of the IO, barium aluminate (BaAl2O4) was used for the first time as a promoter of the OC. It was found that the surface decoration with BaAl2O4 significantly improved the redox performance of IO over the temperature range of 700–900 °C. Almost 100% syngas combustion over 30 redox cycles was achieved by IO modified with 10% of BaAl2O4 (IO-10BA) at a space velocity of 31700 h−1, whereas only ~70% combustion efficiency was achieved by pristine IO. Additionally, BaAl2O4 doping improved the oxygen transport capacity of the IO by 36.2%. Based on complementary characterization analyses, we found that more oxygen vacancies were formed in the modified OC due to the oxygen non-stoichiometry nature of the BaAl2O4 and its interaction with the iron oxide species. This interaction facilitated the rapid migration of the lattice oxygen in the bulk phase, thereby enhancing the reactivity and increasing the oxygen transport capacity of the OCs. The addition of BaAl2O4 also induced a change to the solid morphology, making the OC become more porous over redox cycles, a phenomenon that was partly responsible for the high combustion performance of the IO-10BA.

Suggested Citation

  • Wang, Haiming & Dou, Xiaomin & Veksha, Andrei & Liu, Wen & Giannis, Apostolos & Ge, Liya & Thye Lim, Teik & Lisak, Grzegorz, 2020. "Barium aluminate improved iron ore for the chemical looping combustion of syngas," Applied Energy, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:appene:v:272:y:2020:i:c:s0306261920307480
    DOI: 10.1016/j.apenergy.2020.115236
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920307480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chan, Wei Ping & Veksha, Andrei & Lei, Junxi & Oh, Wen-Da & Dou, Xiaomin & Giannis, Apostolos & Lisak, Grzegorz & Lim, Teik-Thye, 2019. "A hot syngas purification system integrated with downdraft gasification of municipal solid waste," Applied Energy, Elsevier, vol. 237(C), pages 227-240.
    2. Haider, S.K. & Azimi, G. & Duan, L. & Anthony, E.J. & Patchigolla, K. & Oakey, J.E. & Leion, H. & Mattisson, T. & Lyngfelt, A., 2016. "Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation," Applied Energy, Elsevier, vol. 163(C), pages 41-50.
    3. Görke, R.H. & Hu, W. & Dunstan, M.T. & Dennis, J.S. & Scott, S.A., 2018. "Exploration of the material property space for chemical looping air separation applied to carbon capture and storage," Applied Energy, Elsevier, vol. 212(C), pages 478-488.
    4. Xie, Xin & Li, Yingjie & Wang, Wenjing & Shi, Lei, 2014. "HCl removal using cycled carbide slag from calcium looping cycles," Applied Energy, Elsevier, vol. 135(C), pages 391-401.
    5. Shen, Yafei & Yoshikawa, Kunio, 2013. "Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 371-392.
    6. Knutsson, Pavleta & Linderholm, Carl, 2015. "Characterization of ilmenite used as oxygen carrier in a 100kW chemical-looping combustor for solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 368-373.
    7. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    8. Siriwardane, Ranjani & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Chemical looping coal gasification with calcium ferrite and barium ferrite via solid–solid reactions," Applied Energy, Elsevier, vol. 165(C), pages 952-966.
    9. Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.
    10. Gu, Haiming & Shen, Laihong & Zhong, Zhaoping & Niu, Xin & Liu, Weidong & Ge, Huijun & Jiang, Shouxi & Wang, Lulu, 2015. "Cement/CaO-modified iron ore as oxygen carrier for chemical looping combustion of coal," Applied Energy, Elsevier, vol. 157(C), pages 314-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di, Zichen & Yilmaz, Duygu & Biswas, Arijit & Cheng, Fangqin & Leion, Henrik, 2022. "Spinel ferrite-contained industrial materials as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 307(C).
    2. Wang, Haiming & Liu, Guicai & Veksha, Andrei & Giannis, Apostolos & Lim, Teik-Thye & Lisak, Grzegorz, 2021. "Effective H2S control during chemical looping combustion by iron ore modified with alkaline earth metal oxides," Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.
    2. Gu, Zhenhua & Zhang, Ling & Lu, Chunqiang & Qing, Shan & Li, Kongzhai, 2020. "Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion," Applied Energy, Elsevier, vol. 277(C).
    3. Wang, Haiming & Liu, Guicai & Veksha, Andrei & Giannis, Apostolos & Lim, Teik-Thye & Lisak, Grzegorz, 2021. "Effective H2S control during chemical looping combustion by iron ore modified with alkaline earth metal oxides," Energy, Elsevier, vol. 218(C).
    4. Di, Zichen & Yilmaz, Duygu & Biswas, Arijit & Cheng, Fangqin & Leion, Henrik, 2022. "Spinel ferrite-contained industrial materials as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 307(C).
    5. Zhang, Jinzhi & He, Tao & Wang, Zhiqi & Zhu, Min & Zhang, Ke & Li, Bin & Wu, Jinhu, 2017. "The search of proper oxygen carriers for chemical looping partial oxidation of carbon," Applied Energy, Elsevier, vol. 190(C), pages 1119-1125.
    6. Liu, Guicai & Liao, Yanfen & Wu, Yuting & Ma, Xiaoqian, 2018. "Synthesis gas production from microalgae gasification in the presence of Fe2O3 oxygen carrier and CaO additive," Applied Energy, Elsevier, vol. 212(C), pages 955-965.
    7. Beatrice Muriungi & Lijun Wang & Abolghasem Shahbazi, 2020. "Comparison of Bimetallic Fe-Cu and Fe-Ca Oxygen Carriers for Biomass Gasification," Energies, MDPI, vol. 13(8), pages 1-11, April.
    8. Zeng, Jimin & Hu, Jiawei & Qiu, Yu & Zhang, Shuai & Zeng, Dewang & Xiao, Rui, 2019. "Multi-function of oxygen carrier for in-situ tar removal in chemical looping gasification: Naphthalene as a model compound," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Unyaphan, Siriwat & Tarnpradab, Thanyawan & Takahashi, Fumitake & Yoshikawa, Kunio, 2017. "Improvement of tar removal performance of oil scrubber by producing syngas microbubbles," Applied Energy, Elsevier, vol. 205(C), pages 802-812.
    10. Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).
    11. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    12. Pan, Xuwei & Wu, Yan & Li, Tingzhen & Lan, Guoxin & Shen, Jia & Yu, Yue & Xue, Ping & Chen, Dan & Wang, Maoqing & Fu, Chuan, 2023. "A study of co-pyrolysis of sewage sludge and rice husk for syngas production based on a cyclic catalytic integrated process system," Renewable Energy, Elsevier, vol. 215(C).
    13. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    14. Fan, Yuyang & Tippayawong, Nakorn & Wei, Guoqiang & Huang, Zhen & Zhao, Kun & Jiang, Liqun & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2020. "Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification," Applied Energy, Elsevier, vol. 260(C).
    15. Lei, Zhiping & Yan, Jingchong & Fang, Jia & Shui, Hengfu & Ren, Shibiao & Wang, Zhicai & Li, Zhanku & Kong, Ying & Kang, Shigang, 2021. "Catalytic combustion of coke and NO reduction in-situ under the action of Fe, Fe–CaO and Fe–CeO2," Energy, Elsevier, vol. 216(C).
    16. Nzihou, Ange & Stanmore, Brian & Sharrock, Patrick, 2013. "A review of catalysts for the gasification of biomass char, with some reference to coal," Energy, Elsevier, vol. 58(C), pages 305-317.
    17. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Zhang, Huining & Gao, Chong & Chen, Ben & Tang, Jiang & He, Dongfeng & Xu, Anjun, 2018. "Stainless steel tailings accelerated direct carbonation process at low pressure: Carbonation efficiency evaluation and chromium leaching inhibition correlation analysis," Energy, Elsevier, vol. 155(C), pages 772-781.
    19. Lu, Xuao & Rahman, Ryad A. & Lu, Dennis Y. & Ridha, Firas N. & Duchesne, Marc A. & Tan, Yewen & Hughes, Robin W., 2016. "Pressurized chemical looping combustion with CO: Reduction reactivity and oxygen-transport capacity of ilmenite ore," Applied Energy, Elsevier, vol. 184(C), pages 132-139.
    20. Yin, Weijie & Wang, Shuai & Zhang, Kai & He, Yurong, 2020. "Numerical investigation of in situ gasification chemical looping combustion of biomass in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 151(C), pages 216-225.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:272:y:2020:i:c:s0306261920307480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.