IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v272y2020ics0306261920306991.html
   My bibliography  Save this article

A decentralized, non-iterative smart protocol for workplace charging of battery electric vehicles

Author

Listed:
  • Ramos Muñoz, Edgar
  • Jabbari, Faryar

Abstract

Battery electric vehicles can help reduce fossil fuel consumption and greenhouse gas emissions. Specifically, workplace charging can alleviate the curtailment of renewable resources, while providing charging opportunities to long-range commuters. In this work, a comprehensive smart-charging protocol for workplace charging is proposed. The protocol first uses an ordering strategy, based on each vehicle’s load shifting flexibility, to develop a queue. Next, a decentralized smart-charging strategy is used that allows battery electric vehicles to generate their own charging profile via linear programming. By using an appropriate cost signal, the proposed smart-charging strategy can generate a parking structure demand load with desirable characteristics. Finally, an assignment algorithm is proposed to assign battery electric vehicles to octopus chargers. Driving patterns from the National Household Travel Survey are used to simulate workplace charging for parking structures under various charging scenarios. The proposed ordering strategy resulted in improved peak reductions for all simulated charging scenarios, when compared with chronological ordering. Furthermore, monthly electricity costs and the number of required chargers were both reduced in all cases where smart charging was combined with the proposed ordering strategy, compared to uncontrolled charging. Thus, the proposed protocol can reduce electricity and charging infrastructure costs associated with workplace charging.

Suggested Citation

  • Ramos Muñoz, Edgar & Jabbari, Faryar, 2020. "A decentralized, non-iterative smart protocol for workplace charging of battery electric vehicles," Applied Energy, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:appene:v:272:y:2020:i:c:s0306261920306991
    DOI: 10.1016/j.apenergy.2020.115187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920306991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2016. "Electricity costs for an electric vehicle fueling station with Level 3 charging," Applied Energy, Elsevier, vol. 169(C), pages 813-830.
    2. Ramos Muñoz, Edgar & Razeghi, Ghazal & Zhang, Li & Jabbari, Faryar, 2016. "Electric vehicle charging algorithms for coordination of the grid and distribution transformer levels," Energy, Elsevier, vol. 113(C), pages 930-942.
    3. Shanjun Li & Lang Tong & Jianwei Xing & Yiyi Zhou, 2017. "The Market for Electric Vehicles: Indirect Network Effects and Policy Design," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(1), pages 89-133.
    4. Bonges, Henry A. & Lusk, Anne C., 2016. "Addressing electric vehicle (EV) sales and range anxiety through parking layout, policy and regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 63-73.
    5. Heydarian-Forushani, E. & Golshan, M.E.H. & Shafie-khah, M., 2016. "Flexible interaction of plug-in electric vehicle parking lots for efficient wind integration," Applied Energy, Elsevier, vol. 179(C), pages 338-349.
    6. Zeng, Bo & Sun, Bo & Wei, Xuan & Gong, Dunwei & Zhao, Dongbo & Singh, Chanan, 2020. "Capacity value estimation of plug-in electric vehicle parking-lots in urban power systems: A physical-social coupling perspective," Applied Energy, Elsevier, vol. 265(C).
    7. Krupa, Joseph S. & Rizzo, Donna M. & Eppstein, Margaret J. & Brad Lanute, D. & Gaalema, Diann E. & Lakkaraju, Kiran & Warrender, Christina E., 2014. "Analysis of a consumer survey on plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 14-31.
    8. Schmidt, Marc & Staudt, Philipp & Weinhardt, Christof, 2020. "Evaluating the importance and impact of user behavior on public destination charging of electric vehicles," Applied Energy, Elsevier, vol. 258(C).
    9. Saxena, Samveg & MacDonald, Jason & Moura, Scott, 2015. "Charging ahead on the transition to electric vehicles with standard 120V wall outlets," Applied Energy, Elsevier, vol. 157(C), pages 720-728.
    10. Tarroja, Brian & Zhang, Li & Wifvat, Van & Shaffer, Brendan & Samuelsen, Scott, 2016. "Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles," Energy, Elsevier, vol. 106(C), pages 673-690.
    11. Su, Wencong & Chow, Mo-Yuen, 2012. "Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck," Applied Energy, Elsevier, vol. 96(C), pages 171-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erdogan, Nuh & Kucuksari, Sadik & Murphy, Jimmy, 2022. "A multi-objective optimization model for EVSE deployment at workplaces with smart charging strategies and scheduling policies," Energy, Elsevier, vol. 254(PA).
    2. Prahaladh Paniyil & Vishwas Powar & Rajendra Singh, 2021. "Sustainable Intelligent Charging Infrastructure for Electrification of Transportation," Energies, MDPI, vol. 14(17), pages 1-23, August.
    3. Yong, Jin Yi & Tan, Wen Shan & Khorasany, Mohsen & Razzaghi, Reza, 2023. "Electric vehicles destination charging: An overview of charging tariffs, business models and coordination strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Edgar Ramos Muñoz & Faryar Jabbari, 2022. "An Octopus Charger-Based Smart Protocol for Battery Electric Vehicle Charging at a Workplace Parking Structure," Energies, MDPI, vol. 15(17), pages 1-25, September.
    5. Daryabari, Mohamad K. & Keypour, Reza & Golmohamadi, Hessam, 2020. "Stochastic energy management of responsive plug-in electric vehicles characterizing parking lot aggregators," Applied Energy, Elsevier, vol. 279(C).
    6. Erdogan, Nuh & Pamucar, Dragan & Kucuksari, Sadik & Deveci, Muhammet, 2021. "An integrated multi-objective optimization and multi-criteria decision-making model for optimal planning of workplace charging stations," Applied Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edgar Ramos Muñoz & Faryar Jabbari, 2022. "An Octopus Charger-Based Smart Protocol for Battery Electric Vehicle Charging at a Workplace Parking Structure," Energies, MDPI, vol. 15(17), pages 1-25, September.
    2. Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2017. "Electricity costs for a Level 3 electric vehicle fueling station integrated with a building," Applied Energy, Elsevier, vol. 191(C), pages 367-384.
    3. Seiho Kim & Jaesik Lee & Chulung Lee, 2017. "Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption?," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    4. Gao, Jiong & Ma, Shoufeng & Zou, Hongyang & Du, Huibin, 2023. "How does population agglomeration influence the adoption of new energy vehicles? Evidence from 290 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    5. Xiang Zhang & David Rey & S. Travis Waller & Nathan Chen, 2019. "Range-Constrained Traffic Assignment with Multi-Modal Recharge for Electric Vehicles," Networks and Spatial Economics, Springer, vol. 19(2), pages 633-668, June.
    6. Junpeng Cai & Dewang Chen & Shixiong Jiang & Weijing Pan, 2020. "Dynamic-Area-Based Shortest-Path Algorithm for Intelligent Charging Guidance of Electric Vehicles," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    7. Jian, Linni & Zheng, Yanchong & Shao, Ziyun, 2017. "High efficient valley-filling strategy for centralized coordinated charging of large-scale electric vehicles," Applied Energy, Elsevier, vol. 186(P1), pages 46-55.
    8. Mario Eduardo Carbonó dela Rosa & Graciela Velasco Herrera & Rocío Nava & Enrique Quiroga González & Rodolfo Sosa Echeverría & Pablo Sánchez Álvarez & Jaime Gandarilla Ibarra & Víctor Manuel Velasco H, 2023. "A New Methodology for Early Detection of Failures in Lithium-Ion Batteries," Energies, MDPI, vol. 16(3), pages 1-18, January.
    9. Dimanchev, Emil & Fleten, Stein-Erik & MacKenzie, Don & Korpås, Magnus, 2023. "Accelerating electric vehicle charging investments: A real options approach to policy design," Energy Policy, Elsevier, vol. 181(C).
    10. Perez-Diaz, Alvaro & Gerding, Enrico & McGroarty, Frank, 2018. "Coordination and payment mechanisms for electric vehicle aggregators," Applied Energy, Elsevier, vol. 212(C), pages 185-195.
    11. Zheng, Yanchong & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2019. "Integrating plug-in electric vehicles into power grids: A comprehensive review on power interaction mode, scheduling methodology and mathematical foundation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 424-439.
    12. Wang, Shanyong & Li, Jun & Zhao, Dingtao, 2017. "The impact of policy measures on consumer intention to adopt electric vehicles: Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 14-26.
    13. Adnan, Nadia & Nordin, Shahrina Md & Rahman, Imran & Rasli, Amran Md, 2017. "A new era of sustainable transport: An experimental examination on forecasting adoption behavior of EVs among Malaysian consumer," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 279-295.
    14. Silvia Tomasi & Alyona Zubaryeva & Cesare Pizzirani & Margherita Dal Col & Jessica Balest, 2021. "Propensity to Choose Electric Vehicles in Cross-Border Alpine Regions," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    15. Sarmad Zaman Rajper & Johan Albrecht, 2020. "Prospects of Electric Vehicles in the Developing Countries: A Literature Review," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    16. Madhusudhan Adhikari & Laxman Prasad Ghimire & Yeonbae Kim & Prakash Aryal & Sundar Bahadur Khadka, 2020. "Identification and Analysis of Barriers against Electric Vehicle Use," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    17. Zhang, Haifeng & Tian, Ming & Zhang, Cong & Wang, Bin & Wang, Dai, 2021. "A systematic solution to quantify economic values of vehicle grid integration," Energy, Elsevier, vol. 232(C).
    18. Tohid Harighi & Sanjeevikumar Padmanaban & Ramazan Bayindir & Eklas Hossain & Jens Bo Holm-Nielsen, 2019. "Electric Vehicle Charge Stations Location Analysis and Determination—Ankara (Turkey) Case Study," Energies, MDPI, vol. 12(18), pages 1-22, September.
    19. Adnan, Nadia & Nordin, Shahrina Md & Rahman, Imran, 2017. "Adoption of PHEV/EV in Malaysia: A critical review on predicting consumer behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 849-862.
    20. Tohid Harighi & Ramazan Bayindir & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Eklas Hossain, 2018. "An Overview of Energy Scenarios, Storage Systems and the Infrastructure for Vehicle-to-Grid Technology," Energies, MDPI, vol. 11(8), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:272:y:2020:i:c:s0306261920306991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.