IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v262y2020ics0306261919321634.html
   My bibliography  Save this article

Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder

Author

Listed:
  • Gajda, Iwona
  • Greenman, John
  • Ieropoulos, Ioannis

Abstract

The chemical energy contained in urine can be efficiently extracted into direct electricity by Microbial Fuel Cell stacks to reach usable power levels for practical implementation and a decentralised power source in remote locations. Herein, a novel type of the anode electrode was developed using powdered activated carbon (PAC) applied onto the carbon fibre scaffold in the ceramic MFC stack to achieve superior electrochemical performance during 500 days of operation. The stack equipped with modified anodes (MF-CV) produced up to 37.9 mW (21.1 W m−3) in comparison to the control (CV) that reached 21.4 mW (11.9 W m−3) showing 77% increase in power production. The novel combination of highly porous activated carbon particles applied onto the conductive network of carbon fibres promoted simultaneously electrocatalytic activity and increased surface area, resulting in excellent power output from the MFC stack as well as higher treatment rate. Considering the low cost and simplicity of the material preparation, as well as the outstanding electrochemical activity during long term operation, the resulting modification provides a promising anode electrocatalyst for high-performance MFC stacks to enhance urine and waste treatment for the purpose of future scale-up and technology implementation as an applied off-grid energy source.

Suggested Citation

  • Gajda, Iwona & Greenman, John & Ieropoulos, Ioannis, 2020. "Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder," Applied Energy, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261919321634
    DOI: 10.1016/j.apenergy.2019.114475
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919321634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114475?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mateo, Sara & Cañizares, Pablo & Rodrigo, Manuel Andrés & Fernandez-Morales, Francisco Jesus, 2018. "Driving force of the better performance of metal-doped carbonaceous anodes in microbial fuel cells," Applied Energy, Elsevier, vol. 225(C), pages 52-59.
    2. Chen, Shuiliang & Patil, Sunil A. & Brown, Robert Keith & Schröder, Uwe, 2019. "Strategies for optimizing the power output of microbial fuel cells: Transitioning from fundamental studies to practical implementation," Applied Energy, Elsevier, vol. 233, pages 15-28.
    3. Hindatu, Y. & Annuar, M.S.M. & Gumel, A.M., 2017. "Mini-review: Anode modification for improved performance of microbial fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 236-248.
    4. Chen, Shuiliang & Patil, Sunil A. & Schröder, Uwe, 2018. "A high-performance rotating graphite fiber brush air-cathode for microbial fuel cells," Applied Energy, Elsevier, vol. 211(C), pages 1089-1094.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawid Nosek & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2020. "Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells," Energies, MDPI, vol. 13(24), pages 1-22, December.
    2. Mashkour, Mehrdad & Rahimnejad, Mostafa & Mashkour, Mahdi & Soavi, Francesca, 2021. "Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly," Applied Energy, Elsevier, vol. 282(PA).
    3. Kamali, Mohammadreza & Guo, Yutong & Aminabhavi, Tejraj M. & Abbassi, Rouzbeh & Dewil, Raf & Appels, Lise, 2023. "Pathway towards the commercialization of sustainable microbial fuel cell-based wastewater treatment technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Apollon, Wilgince & Kamaraj, Sathish-Kumar & Silos-Espino, Héctor & Perales-Segovia, Catarino & Valera-Montero, Luis L. & Maldonado-Ruelas, Víctor A. & Vázquez-Gutiérrez, Marco A. & Ortiz-Medina, Raúl, 2020. "Impact of Opuntia species plant bio-battery in a semi-arid environment: Demonstration of their applications," Applied Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shu-Hui & Lai, Yu-Chuan & Lin, Chi-Wen, 2019. "Enhancement of power generation by microbial fuel cells in treating toluene-contaminated groundwater: Developments of composite anodes with various compositions," Applied Energy, Elsevier, vol. 233, pages 922-929.
    2. Yang, Wei & Li, Jun & Fu, Qian & Zhang, Liang & Wei, Zidong & Liao, Qiang & Zhu, Xun, 2021. "Minimizing mass transfer losses in microbial fuel cells: Theories, progresses and prospectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    3. Dawid Nosek & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2020. "Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells," Energies, MDPI, vol. 13(24), pages 1-22, December.
    4. Aritro Banerjee & Rajnish Kaur Calay & Mohamad Mustafa, 2022. "Review on Material and Design of Anode for Microbial Fuel Cell," Energies, MDPI, vol. 15(6), pages 1-17, March.
    5. Caizán-Juanarena, Leire & Sleutels, Tom & Borsje, Casper & ter Heijne, Annemiek, 2020. "Considerations for application of granular activated carbon as capacitive bioanode in bioelectrochemical systems," Renewable Energy, Elsevier, vol. 157(C), pages 782-792.
    6. Tajdid Khajeh, Rana & Aber, Soheil & Zarei, Mahmoud, 2020. "Comparison of NiCo2O4, CoNiAl-LDH, and CoNiAl-LDH@NiCo2O4 performances as ORR catalysts in MFC cathode," Renewable Energy, Elsevier, vol. 154(C), pages 1263-1271.
    7. Sekar, Aiswarya Devi & Jayabalan, Tamilmani & Muthukumar, Harshiny & Chandrasekaran, Nivedhini Iswarya & Mohamed, Samsudeen Naina & Matheswaran, Manickam, 2019. "Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode," Energy, Elsevier, vol. 172(C), pages 173-180.
    8. Liping Fan & Yaobin Xi, 2021. "Effect of Polypyrrole-Fe 3 O 4 Composite Modified Anode and Its Electrodeposition Time on the Performance of Microbial Fuel Cells," Energies, MDPI, vol. 14(9), pages 1-10, April.
    9. Shahid, Kanwal & Ramasamy, Deepika Lakshmi & Haapasaari, Sampo & Sillanpää, Mika & Pihlajamäki, Arto, 2021. "Stainless steel and carbon brushes as high-performance anodes for energy production and nutrient recovery using the microbial nutrient recovery system," Energy, Elsevier, vol. 233(C).
    10. Zhou, Lean & Liao, Chengmei & Li, Tian & An, Jingkun & Du, Qing & Wan, Lili & Li, Nan & Pan, Xiaoqiang & Wang, Xin, 2018. "Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 199-206.
    11. Mateo, S. & Cantone, A. & Cañizares, P. & Fernández-Morales, F.J. & Scialdone, O. & Rodrigo, M.A., 2018. "On the staking of miniaturized air-breathing microbial fuel cells," Applied Energy, Elsevier, vol. 232(C), pages 1-8.
    12. Tan, Weng Cheong & Saw, Lip Huat & Thiam, Hui San & Xuan, Jin & Cai, Zuansi & Yew, Ming Chian, 2018. "Overview of porous media/metal foam application in fuel cells and solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 181-197.
    13. Ngoc-Dan Cao, Thanh & Mukhtar, Hussnain & Yu, Chang-Ping & Bui, Xuan-Thanh & Pan, Shu-Yuan, 2022. "Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    14. de Ramón-Fernández, Alberto & Salar-García, M.J. & Ruiz-Fernández, Daniel & Greenman, J. & Ieropoulos, I., 2019. "Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Xu, Haitao & Du, Yanan & Chen, Ye & Wen, Qing & Lin, Cunguo & Zheng, Jiyong & Qiu, Zhenghui, 2022. "Electricity generation in simulated benthic microbial fuel cell with conductive polyaniline-polypyrole composite hydrogel anode," Renewable Energy, Elsevier, vol. 183(C), pages 242-250.
    16. Liu, Hong-zhou & Chen, Tie-zhu & Wang, Nan & Zhang, Yu-rui & Li, Jian-chang, 2024. "A new strategy for improving MFC power output by shared electrode MFC–MEC coupling," Applied Energy, Elsevier, vol. 359(C).
    17. Marks, Stanislaw & Makinia, Jacek & Fernandez-Morales, Francisco Jesus, 2019. "Performance of microbial fuel cells operated under anoxic conditions," Applied Energy, Elsevier, vol. 250(C), pages 1-6.
    18. Maria G. Savvidou & Pavlos K. Pandis & Diomi Mamma & Georgia Sourkouni & Christos Argirusis, 2022. "Organic Waste Substrates for Bioenergy Production via Microbial Fuel Cells: A Key Point Review," Energies, MDPI, vol. 15(15), pages 1-53, August.
    19. Toczyłowska-Mamińska, Renata & Pielech-Przybylska, Katarzyna & Sekrecka-Belniak, Anna & Dziekońska-Kubczak, Urszula, 2020. "Stimulation of electricity production in microbial fuel cells via regulation of syntrophic consortium development," Applied Energy, Elsevier, vol. 271(C).
    20. Modestra, J. Annie & Reddy, C. Nagendranatha & Krishna, K. Vamshi & Min, Booki & Mohan, S. Venkata, 2020. "Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell," Renewable Energy, Elsevier, vol. 149(C), pages 424-434.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261919321634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.