IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v211y2018icp1089-1094.html
   My bibliography  Save this article

A high-performance rotating graphite fiber brush air-cathode for microbial fuel cells

Author

Listed:
  • Chen, Shuiliang
  • Patil, Sunil A.
  • Schröder, Uwe

Abstract

Microbial fuel cells (MFC) represent an emerging technology to harvest electric energy from waste streams like wastewaters. To further increase MFC performance, the individual fuel cell processes, such as the cathodic oxygen reduction (ORR) need to be further improved. The commonly used, two-dimensional air-cathodes usually show limited performance due to a low three-phase ORR interface and a low oxygen mass transfer rate. To address these issues, a binder-free rotating three-dimensional air-cathode that provides a larger three-phase ORR interface and an enhanced oxygen mass transfer rate is reported in this paper. The cathode is prepared by coating a self-supporting N and P co-doped carbon ORR catalyst layer onto a graphite fiber brush current collector (GB/NPC). No binder and diffusion layer are used to avoid the limitations associated with these components. The electrochemical tests demonstrate enhanced ORR electrocatalysis under rotation conditions. In MFCs, a high performance was achieved by operating the GB/NPC air-cathode at a slow rotation speed. For example, at 20 rpm, it delivered three times higher cathodic current (1.02 ± 0.05 mA cm−2) and two times higher power output (879 ± 16 mW m−2, normalized to the projected surface area of air-cathode) than its counterpart non-rotating, static air-cathode (0.35 ± 0.03 mA cm−2 and 486 ± 11 mW m−2, respectively). The rotating conditions increased the availability of catalytic sites for the ORR, and improved oxygen diffusion and OH− transport at or within the air-cathode. This study thus presents a promising approach for enhancing the performance of air-cathodes, which is often the major performance-limiting component of the MFCs.

Suggested Citation

  • Chen, Shuiliang & Patil, Sunil A. & Schröder, Uwe, 2018. "A high-performance rotating graphite fiber brush air-cathode for microbial fuel cells," Applied Energy, Elsevier, vol. 211(C), pages 1089-1094.
  • Handle: RePEc:eee:appene:v:211:y:2018:i:c:p:1089-1094
    DOI: 10.1016/j.apenergy.2017.12.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917317269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.12.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chin-Tsan & Lee, Yao-Cheng & Ou, Yun-Ting & Yang, Yung-Chin & Chong, Wen-Tong & Sangeetha, Thangavel & Yan, Wei-Mon, 2017. "Exposing effect of comb-type cathode electrode on the performance of sediment microbial fuel cells," Applied Energy, Elsevier, vol. 204(C), pages 620-625.
    2. Trapero, Juan R. & Horcajada, Laura & Linares, Jose J. & Lobato, Justo, 2017. "Is microbial fuel cell technology ready? An economic answer towards industrial commercialization," Applied Energy, Elsevier, vol. 185(P1), pages 698-707.
    3. Pandey, Prashant & Shinde, Vikas N. & Deopurkar, Rajendra L. & Kale, Sharad P. & Patil, Sunil A. & Pant, Deepak, 2016. "Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery," Applied Energy, Elsevier, vol. 168(C), pages 706-723.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khandaker, Shahjalal & Bashar, M Mahbubul & Islam, Aminul & Hossain, Md. Tofazzal & Teo, Siow Hwa & Awual, Md. Rabiul, 2022. "Sustainable energy generation from textile biowaste and its challenges: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Chen, Shuiliang & Patil, Sunil A. & Brown, Robert Keith & Schröder, Uwe, 2019. "Strategies for optimizing the power output of microbial fuel cells: Transitioning from fundamental studies to practical implementation," Applied Energy, Elsevier, vol. 233, pages 15-28.
    3. Yang, Wei & Li, Jun & Fu, Qian & Zhang, Liang & Wei, Zidong & Liao, Qiang & Zhu, Xun, 2021. "Minimizing mass transfer losses in microbial fuel cells: Theories, progresses and prospectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    4. Gajda, Iwona & Greenman, John & Ieropoulos, Ioannis, 2020. "Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder," Applied Energy, Elsevier, vol. 262(C).
    5. Maria G. Savvidou & Pavlos K. Pandis & Diomi Mamma & Georgia Sourkouni & Christos Argirusis, 2022. "Organic Waste Substrates for Bioenergy Production via Microbial Fuel Cells: A Key Point Review," Energies, MDPI, vol. 15(15), pages 1-53, August.
    6. Zhou, Lean & Liao, Chengmei & Li, Tian & An, Jingkun & Du, Qing & Wan, Lili & Li, Nan & Pan, Xiaoqiang & Wang, Xin, 2018. "Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 199-206.
    7. Jafar Ali & Aaqib Sohail & Lei Wang & Muhammad Rizwan Haider & Shahi Mulk & Gang Pan, 2018. "Electro-Microbiology as a Promising Approach Towards Renewable Energy and Environmental Sustainability," Energies, MDPI, vol. 11(7), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chin-Tsan & Huang, Yan-Sian & Sangeetha, Thangavel & Yan, Wei-Mon, 2018. "Assessment of recirculation batch mode operation in bufferless Bio-cathode microbial Fuel Cells (MFCs)," Applied Energy, Elsevier, vol. 209(C), pages 120-126.
    2. Massaglia, Giulia & Margaria, Valentina & Sacco, Adriano & Tommasi, Tonia & Pentassuglia, Simona & Ahmed, Daniyal & Mo, Roberto & Pirri, Candido Fabrizio & Quaglio, Marzia, 2018. "In situ continuous current production from marine floating microbial fuel cells," Applied Energy, Elsevier, vol. 230(C), pages 78-85.
    3. Liu, Panpan & Liang, Peng & Jiang, Yong & Hao, Wen & Miao, Bo & Wang, Donglin & Huang, Xia, 2018. "Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 382-388.
    4. Fischer, Fabian & Sugnaux, Marc & Savy, Cyrille & Hugenin, Gérald, 2018. "Microbial fuel cell stack power to lithium battery stack: Pilot concept for scale up," Applied Energy, Elsevier, vol. 230(C), pages 1633-1644.
    5. de Ramón-Fernández, Alberto & Salar-García, M.J. & Ruiz-Fernández, Daniel & Greenman, J. & Ieropoulos, I., 2019. "Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Wang, Chin-Tsan & Lee, Yao-Cheng & Ou, Yun-Ting & Yang, Yung-Chin & Chong, Wen-Tong & Sangeetha, Thangavel & Yan, Wei-Mon, 2017. "Exposing effect of comb-type cathode electrode on the performance of sediment microbial fuel cells," Applied Energy, Elsevier, vol. 204(C), pages 620-625.
    7. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    8. Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
    9. Toczyłowska-Mamińska, Renata & Pielech-Przybylska, Katarzyna & Sekrecka-Belniak, Anna & Dziekońska-Kubczak, Urszula, 2020. "Stimulation of electricity production in microbial fuel cells via regulation of syntrophic consortium development," Applied Energy, Elsevier, vol. 271(C).
    10. Ahmed, Shams Forruque & Mofijur, M. & Islam, Nafisa & Parisa, Tahlil Ahmed & Rafa, Nazifa & Bokhari, Awais & Klemeš, Jiří Jaromír & Indra Mahlia, Teuku Meurah, 2022. "Insights into the development of microbial fuel cells for generating biohydrogen, bioelectricity, and treating wastewater," Energy, Elsevier, vol. 254(PA).
    11. Giulia Massaglia & Adriano Sacco & Alain Favetto & Luciano Scaltrito & Sergio Ferrero & Roberto Mo & Candido F. Pirri & Marzia Quaglio, 2021. "Integration of Portable Sedimentary Microbial Fuel Cells in Autonomous Underwater Vehicles," Energies, MDPI, vol. 14(15), pages 1-12, July.
    12. Sangeetha, Thangavel & Guo, Zechong & Liu, Wenzong & Gao, Lei & Wang, Ling & Cui, Minhua & Chen, Chuan & Wang, Aijie, 2017. "Energy recovery evaluation in an up flow microbial electrolysis coupled anaerobic digestion (ME-AD) reactor: Role of electrode positions and hydraulic retention times," Applied Energy, Elsevier, vol. 206(C), pages 1214-1224.
    13. Santoro, Carlo & Abad, Fernando Benito & Serov, Alexey & Kodali, Mounika & Howe, Kerry J. & Soavi, Francesca & Atanassov, Plamen, 2017. "Supercapacitive microbial desalination cells: New class of power generating devices for reduction of salinity content," Applied Energy, Elsevier, vol. 208(C), pages 25-36.
    14. Antonopoulou, G. & Ntaikou, I. & Pastore, C. & di Bitonto, L. & Bebelis, S. & Lyberatos, G., 2019. "An overall perspective for the energetic valorization of household food waste using microbial fuel cell technology of its extract, coupled with anaerobic digestion of the solid residue," Applied Energy, Elsevier, vol. 242(C), pages 1064-1073.
    15. Eva Segura & Rafael Morales & José A. Somolinos, 2017. "Cost Assessment Methodology and Economic Viability of Tidal Energy Projects," Energies, MDPI, vol. 10(11), pages 1-27, November.
    16. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    17. Tang, Raymond Chong Ong & Jang, Jer-Huan & Lan, Tzu-Hsuan & Wu, Jung-Chen & Yan, Wei-Mon & Sangeetha, Thangavel & Wang, Chin-Tsan & Ong, Hwai Chyuan & Ong, Zhi Chao, 2020. "Review on design factors of microbial fuel cells using Buckingham's Pi Theorem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    18. Hu, Jianjun & Zhang, Quanguo & Lee, Duu-Jong & Ngo, Huu Hao, 2018. "Feasible use of microbial fuel cells for pollution treatment," Renewable Energy, Elsevier, vol. 129(PB), pages 824-829.
    19. Rui N. L. Carvalho & Luisa L. Monteiro & Silvia A. Sousa & Sudarsu V. Ramanaiah & Jorge H. Leitão & Cristina M. Cordas & Luis P. Fonseca, 2023. "Design and Optimization of Microbial Fuel Cells and Evaluation of a New Air-Breathing Cathode Based on Carbon Felt Modified with a Hydrogel—Ion Jelly ®," Energies, MDPI, vol. 16(10), pages 1-24, May.
    20. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:211:y:2018:i:c:p:1089-1094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.