IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4551-d602969.html
   My bibliography  Save this article

Integration of Portable Sedimentary Microbial Fuel Cells in Autonomous Underwater Vehicles

Author

Listed:
  • Giulia Massaglia

    (Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
    Center for Sustainable Future Technologies@ POLITO, Istituto Italiano Di Tecnologia, 10144 Torino, Italy)

  • Adriano Sacco

    (Center for Sustainable Future Technologies@ POLITO, Istituto Italiano Di Tecnologia, 10144 Torino, Italy)

  • Alain Favetto

    (Center for Sustainable Future Technologies@ POLITO, Istituto Italiano Di Tecnologia, 10144 Torino, Italy)

  • Luciano Scaltrito

    (Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy)

  • Sergio Ferrero

    (Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy)

  • Roberto Mo

    (Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy)

  • Candido F. Pirri

    (Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
    Center for Sustainable Future Technologies@ POLITO, Istituto Italiano Di Tecnologia, 10144 Torino, Italy)

  • Marzia Quaglio

    (Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
    Center for Sustainable Future Technologies@ POLITO, Istituto Italiano Di Tecnologia, 10144 Torino, Italy)

Abstract

In the present work, sedimentary microbial fuel cells (s-MFC) have been proposed as effective tools to power remote sensors in different aquatic environments, thanks to their ability to produce renewable and sustainable energy continuously and autonomously. The present work proposes the optimization of cylindrical sedimentary microbial fuel cells (s-MFC) as a compact and cost-effective system suitable to be integrated as a payload in an Autonomous Underwater Vehicle (AUV). To this purpose, a new AUV payload, named MFC-payload, is designed to host the cylindrical s-MFC and a data acquisition system to collect and store information on the voltage produced by the cell. Its overall performance was evaluated during two field measurement campaigns carried out in the Mediterranean Sea. This investigation demonstrates the power production by s-MFC during operation of the AUV in seawater and analyzes the actual influence of environmental conditions on the output power. This study demonstrates that energy production by s-MFCs integrated in AUV systems is decoupled by the navigation of the autonomous vehicle itself, showing the effectiveness of the application of MFC-based technology as a power payload for environmental analysis. All these latter results demonstrate and confirm the ability of the devices to continuously produce electricity during different AUV operation modes (i.e., depth and speed), while changing environmental conditions (i.e., pressure, temperature and oxygen content) demonstrate that cylindrical s-MFC devices are robust system that can be successfully used in underwater applications.

Suggested Citation

  • Giulia Massaglia & Adriano Sacco & Alain Favetto & Luciano Scaltrito & Sergio Ferrero & Roberto Mo & Candido F. Pirri & Marzia Quaglio, 2021. "Integration of Portable Sedimentary Microbial Fuel Cells in Autonomous Underwater Vehicles," Energies, MDPI, vol. 14(15), pages 1-12, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4551-:d:602969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4551/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alejandro Mendez & Teresa J. Leo & Miguel A. Herreros, 2014. "Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles," Energies, MDPI, vol. 7(7), pages 1-18, July.
    2. Trapero, Juan R. & Horcajada, Laura & Linares, Jose J. & Lobato, Justo, 2017. "Is microbial fuel cell technology ready? An economic answer towards industrial commercialization," Applied Energy, Elsevier, vol. 185(P1), pages 698-707.
    3. Massaglia, Giulia & Margaria, Valentina & Sacco, Adriano & Tommasi, Tonia & Pentassuglia, Simona & Ahmed, Daniyal & Mo, Roberto & Pirri, Candido Fabrizio & Quaglio, Marzia, 2018. "In situ continuous current production from marine floating microbial fuel cells," Applied Energy, Elsevier, vol. 230(C), pages 78-85.
    4. Wetser, Koen & Dieleman, Kim & Buisman, Cees & Strik, David, 2017. "Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes," Applied Energy, Elsevier, vol. 185(P1), pages 642-649.
    5. Pandey, Prashant & Shinde, Vikas N. & Deopurkar, Rajendra L. & Kale, Sharad P. & Patil, Sunil A. & Pant, Deepak, 2016. "Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery," Applied Energy, Elsevier, vol. 168(C), pages 706-723.
    6. Jannelli, Nicole & Anna Nastro, Rosa & Cigolotti, Viviana & Minutillo, Mariagiovanna & Falcucci, Giacomo, 2017. "Low pH, high salinity: Too much for microbial fuel cells?," Applied Energy, Elsevier, vol. 192(C), pages 543-550.
    7. Moosavian, S.M. & Rahim, N.A. & Selvaraj, J. & Solangi, K.H., 2013. "Energy policy to promote photovoltaic generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 44-58.
    8. Rahimnejad, Mostafa & Ghoreyshi, Ali Asghar & Najafpour, Ghasem & Jafary, Tahereh, 2011. "Power generation from organic substrate in batch and continuous flow microbial fuel cell operations," Applied Energy, Elsevier, vol. 88(11), pages 3999-4004.
    9. Tyagi, V.V. & Rahim, Nurul A.A. & Rahim, N.A. & Selvaraj, Jeyraj A./L., 2013. "Progress in solar PV technology: Research and achievement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 443-461.
    10. Ewing, Timothy & Ha, Phuc Thi & Beyenal, Haluk, 2017. "Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources," Applied Energy, Elsevier, vol. 192(C), pages 490-497.
    11. Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
    12. Han, He-Xing & Shi, Chen & Yuan, Li & Sheng, Guo-Ping, 2017. "Enhancement of methyl orange degradation and power generation in a photoelectrocatalytic microbial fuel cell," Applied Energy, Elsevier, vol. 204(C), pages 382-389.
    13. Khan, N. & Kalair, A. & Abas, N. & Haider, A., 2017. "Review of ocean tidal, wave and thermal energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 590-604.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massaglia, Giulia & Margaria, Valentina & Sacco, Adriano & Tommasi, Tonia & Pentassuglia, Simona & Ahmed, Daniyal & Mo, Roberto & Pirri, Candido Fabrizio & Quaglio, Marzia, 2018. "In situ continuous current production from marine floating microbial fuel cells," Applied Energy, Elsevier, vol. 230(C), pages 78-85.
    2. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    3. Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
    4. de Ramón-Fernández, Alberto & Salar-García, M.J. & Ruiz-Fernández, Daniel & Greenman, J. & Ieropoulos, I., 2019. "Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Iqbal, Jamshed & Khan, Zeashan Hameed, 2017. "The potential role of renewable energy sources in robot's power system: A case study of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 106-122.
    6. Wang, Chin-Tsan & Lee, Yao-Cheng & Ou, Yun-Ting & Yang, Yung-Chin & Chong, Wen-Tong & Sangeetha, Thangavel & Yan, Wei-Mon, 2017. "Exposing effect of comb-type cathode electrode on the performance of sediment microbial fuel cells," Applied Energy, Elsevier, vol. 204(C), pages 620-625.
    7. Antonopoulou, G. & Ntaikou, I. & Pastore, C. & di Bitonto, L. & Bebelis, S. & Lyberatos, G., 2019. "An overall perspective for the energetic valorization of household food waste using microbial fuel cell technology of its extract, coupled with anaerobic digestion of the solid residue," Applied Energy, Elsevier, vol. 242(C), pages 1064-1073.
    8. Mashkour, Mehrdad & Rahimnejad, Mostafa & Mashkour, Mahdi & Soavi, Francesca, 2021. "Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly," Applied Energy, Elsevier, vol. 282(PA).
    9. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    10. Liu, Panpan & Liang, Peng & Jiang, Yong & Hao, Wen & Miao, Bo & Wang, Donglin & Huang, Xia, 2018. "Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 382-388.
    11. Apollon, Wilgince & Kamaraj, Sathish-Kumar & Silos-Espino, Héctor & Perales-Segovia, Catarino & Valera-Montero, Luis L. & Maldonado-Ruelas, Víctor A. & Vázquez-Gutiérrez, Marco A. & Ortiz-Medina, Raúl, 2020. "Impact of Opuntia species plant bio-battery in a semi-arid environment: Demonstration of their applications," Applied Energy, Elsevier, vol. 279(C).
    12. Ewing, Timothy & Ha, Phuc Thi & Beyenal, Haluk, 2017. "Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources," Applied Energy, Elsevier, vol. 192(C), pages 490-497.
    13. Wu, Shiqiang & Patil, Sunil A. & Chen, Shuiliang, 2018. "Auto-feeding microbial fuel cell inspired by transpiration of plants," Applied Energy, Elsevier, vol. 225(C), pages 934-939.
    14. Birjandi, Noushin & Younesi, Habibollah & Ghoreyshi, Ali Asghar & Rahimnejad, Mostafa, 2020. "Enhanced medicinal herbs wastewater treatment in continuous flow bio-electro-Fenton operations along with power generation," Renewable Energy, Elsevier, vol. 155(C), pages 1079-1090.
    15. Sangeetha, Thangavel & Guo, Zechong & Liu, Wenzong & Gao, Lei & Wang, Ling & Cui, Minhua & Chen, Chuan & Wang, Aijie, 2017. "Energy recovery evaluation in an up flow microbial electrolysis coupled anaerobic digestion (ME-AD) reactor: Role of electrode positions and hydraulic retention times," Applied Energy, Elsevier, vol. 206(C), pages 1214-1224.
    16. Santoro, Carlo & Abad, Fernando Benito & Serov, Alexey & Kodali, Mounika & Howe, Kerry J. & Soavi, Francesca & Atanassov, Plamen, 2017. "Supercapacitive microbial desalination cells: New class of power generating devices for reduction of salinity content," Applied Energy, Elsevier, vol. 208(C), pages 25-36.
    17. Chen, Shuiliang & Patil, Sunil A. & Schröder, Uwe, 2018. "A high-performance rotating graphite fiber brush air-cathode for microbial fuel cells," Applied Energy, Elsevier, vol. 211(C), pages 1089-1094.
    18. Rui N. L. Carvalho & Luisa L. Monteiro & Silvia A. Sousa & Sudarsu V. Ramanaiah & Jorge H. Leitão & Cristina M. Cordas & Luis P. Fonseca, 2023. "Design and Optimization of Microbial Fuel Cells and Evaluation of a New Air-Breathing Cathode Based on Carbon Felt Modified with a Hydrogel—Ion Jelly ®," Energies, MDPI, vol. 16(10), pages 1-24, May.
    19. Xu, Lei & Wang, Bodi & Liu, Xiuhua & Yu, Wenzheng & Zhao, Yaqian, 2018. "Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland," Applied Energy, Elsevier, vol. 214(C), pages 83-91.
    20. Iain S. Michie & Richard M. Dinsdale & Alan J. Guwy & Giuliano C. Premier, 2020. "Electrogenic Biofilm Development Determines Charge Accumulation and Resistance to pH Perturbation," Energies, MDPI, vol. 13(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4551-:d:602969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.