IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v271y2020ics0306261920306966.html
   My bibliography  Save this article

Stimulation of electricity production in microbial fuel cells via regulation of syntrophic consortium development

Author

Listed:
  • Toczyłowska-Mamińska, Renata
  • Pielech-Przybylska, Katarzyna
  • Sekrecka-Belniak, Anna
  • Dziekońska-Kubczak, Urszula

Abstract

Production of electricity from wastewater in microbial fuel cells is possible due to the cooperation of hydrolytic, fermentative, and electrogenic microorganisms coexisting in a consortium. In this article, we present results that indicate that we can stimulate electrical current production from wastewater, from which power could not be produced without influencing the growth of a microbial consortium through preconditioning. The wood industry wastewater was thermally preconditioned at 45 °C before introducing it to microbial fuel cells which resulted in changing microbial consortium composition by the development of new species. In the anodes of microbial fuel cells that were fed preconditioned wastewater, we identified, by the means of metagenomic analysis, mixed fungi-bacteria syntrophic consortium that was capable of producing electricity from wood industry wastewater. The developed syntrophic consortium was dominated by fungi of the Trichocomaceae sp. and two bacteria species: Achromobacter insolitus and Geobacter sulfurreducens. None of these species were present in raw wastewater. Power was not generated in microbial fuel cells that were fed raw wastewater, but wastewater preconditioning stimulated power production at 0.33 W/m2 what responded to 1 A/m2 current density. The developed consortium decomposed cellulose present in wastewater into glucose and fermented it into acids and alcohols. We showed that stimulation of power production may be driven through substrate preconditioning before it is used in microbial fuel cells. By selecting growth conditions for a consortium, we may regulate its microbial composition and facilitate production of an electrical current from substrates that could not previously be used in microbial fuel cells.

Suggested Citation

  • Toczyłowska-Mamińska, Renata & Pielech-Przybylska, Katarzyna & Sekrecka-Belniak, Anna & Dziekońska-Kubczak, Urszula, 2020. "Stimulation of electricity production in microbial fuel cells via regulation of syntrophic consortium development," Applied Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:appene:v:271:y:2020:i:c:s0306261920306966
    DOI: 10.1016/j.apenergy.2020.115184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920306966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anna Sekrecka-Belniak & Renata Toczyłowska-Mamińska, 2018. "Fungi-Based Microbial Fuel Cells," Energies, MDPI, vol. 11(10), pages 1-18, October.
    2. Trapero, Juan R. & Horcajada, Laura & Linares, Jose J. & Lobato, Justo, 2017. "Is microbial fuel cell technology ready? An economic answer towards industrial commercialization," Applied Energy, Elsevier, vol. 185(P1), pages 698-707.
    3. Chen, Shuiliang & Patil, Sunil A. & Brown, Robert Keith & Schröder, Uwe, 2019. "Strategies for optimizing the power output of microbial fuel cells: Transitioning from fundamental studies to practical implementation," Applied Energy, Elsevier, vol. 233, pages 15-28.
    4. Wu, Chao & Liu, Xian-Wei & Li, Wen-Wei & Sheng, Guo-Ping & Zang, Guo-Long & Cheng, Yuan-Yuan & Shen, Nan & Yang, Yi-Pei & Yu, Han-Qing, 2012. "A white-rot fungus is used as a biocathode to improve electricity production of a microbial fuel cell," Applied Energy, Elsevier, vol. 98(C), pages 594-596.
    5. Oliot, Manon & Galier, Sylvain & Roux de Balmann, Hélène & Bergel, Alain, 2016. "Ion transport in microbial fuel cells: Key roles, theory and critical review," Applied Energy, Elsevier, vol. 183(C), pages 1682-1704.
    6. Sevda, Surajbhan & Dominguez-Benetton, Xochitl & Vanbroekhoven, Karolien & De Wever, Heleen & Sreekrishnan, T.R. & Pant, Deepak, 2013. "High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 194-206.
    7. Krieg, Thomas & Enzmann, Franziska & Sell, Dieter & Schrader, Jens & Holtmann, Dirk, 2017. "Simulation of the current generation of a microbial fuel cell in a laboratory wastewater treatment plant," Applied Energy, Elsevier, vol. 195(C), pages 942-949.
    8. Pandey, Prashant & Shinde, Vikas N. & Deopurkar, Rajendra L. & Kale, Sharad P. & Patil, Sunil A. & Pant, Deepak, 2016. "Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery," Applied Energy, Elsevier, vol. 168(C), pages 706-723.
    9. Roustazadeh Sheikhyousefi, P. & Nasr Esfahany, M. & Colombo, A. & Franzetti, A. & Trasatti, S.P. & Cristiani, P., 2017. "Investigation of different configurations of microbial fuel cells for the treatment of oilfield produced water," Applied Energy, Elsevier, vol. 192(C), pages 457-465.
    10. Pasternak, Grzegorz & Greenman, John & Ieropoulos, Ioannis, 2016. "Regeneration of the power performance of cathodes affected by biofouling," Applied Energy, Elsevier, vol. 173(C), pages 431-437.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Yufang & Zhao, Hongbing & Qi, Xuejiao & Yang, Tianxue & Zhang, Junping & Chen, Wangmi & Li, Mingxiao & Xi, Beidou, 2023. "Direct interspecies electron transfer stimulated by coupling of modified anaerobic granular sludge with microbial electrolysis cell for biogas production enhancement," Applied Energy, Elsevier, vol. 341(C).
    2. Hu, Xiaoyi & Tan, Xinru & Shi, Xiaomin & Liu, Wenjun & Ouyang, Tiancheng, 2023. "An integrated assessment of microfluidic microbial fuel cell subjected to vibration excitation," Applied Energy, Elsevier, vol. 336(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    2. Antonopoulou, G. & Ntaikou, I. & Pastore, C. & di Bitonto, L. & Bebelis, S. & Lyberatos, G., 2019. "An overall perspective for the energetic valorization of household food waste using microbial fuel cell technology of its extract, coupled with anaerobic digestion of the solid residue," Applied Energy, Elsevier, vol. 242(C), pages 1064-1073.
    3. de Ramón-Fernández, Alberto & Salar-García, M.J. & Ruiz-Fernández, Daniel & Greenman, J. & Ieropoulos, I., 2019. "Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Wang, Chin-Tsan & Huang, Yan-Sian & Sangeetha, Thangavel & Yan, Wei-Mon, 2018. "Assessment of recirculation batch mode operation in bufferless Bio-cathode microbial Fuel Cells (MFCs)," Applied Energy, Elsevier, vol. 209(C), pages 120-126.
    5. Liu, Panpan & Liang, Peng & Jiang, Yong & Hao, Wen & Miao, Bo & Wang, Donglin & Huang, Xia, 2018. "Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 382-388.
    6. Wang, Chin-Tsan & Lee, Yao-Cheng & Ou, Yun-Ting & Yang, Yung-Chin & Chong, Wen-Tong & Sangeetha, Thangavel & Yan, Wei-Mon, 2017. "Exposing effect of comb-type cathode electrode on the performance of sediment microbial fuel cells," Applied Energy, Elsevier, vol. 204(C), pages 620-625.
    7. Wang, Zhongli & Zhang, Baogang & Jiang, Yufeng & Li, Yunlong & He, Chao, 2018. "Spontaneous thallium (I) oxidation with electricity generation in single-chamber microbial fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 33-42.
    8. Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
    9. Ahmed, Shams Forruque & Mofijur, M. & Islam, Nafisa & Parisa, Tahlil Ahmed & Rafa, Nazifa & Bokhari, Awais & Klemeš, Jiří Jaromír & Indra Mahlia, Teuku Meurah, 2022. "Insights into the development of microbial fuel cells for generating biohydrogen, bioelectricity, and treating wastewater," Energy, Elsevier, vol. 254(PA).
    10. Massaglia, Giulia & Margaria, Valentina & Sacco, Adriano & Tommasi, Tonia & Pentassuglia, Simona & Ahmed, Daniyal & Mo, Roberto & Pirri, Candido Fabrizio & Quaglio, Marzia, 2018. "In situ continuous current production from marine floating microbial fuel cells," Applied Energy, Elsevier, vol. 230(C), pages 78-85.
    11. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    12. Xu, Lei & Wang, Bodi & Liu, Xiuhua & Yu, Wenzheng & Zhao, Yaqian, 2018. "Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland," Applied Energy, Elsevier, vol. 214(C), pages 83-91.
    13. Mashkour, Mehrdad & Rahimnejad, Mostafa & Mashkour, Mahdi & Soavi, Francesca, 2021. "Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly," Applied Energy, Elsevier, vol. 282(PA).
    14. Ngoc-Dan Cao, Thanh & Mukhtar, Hussnain & Yu, Chang-Ping & Bui, Xuan-Thanh & Pan, Shu-Yuan, 2022. "Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    15. Fischer, Fabian & Sugnaux, Marc & Savy, Cyrille & Hugenin, Gérald, 2018. "Microbial fuel cell stack power to lithium battery stack: Pilot concept for scale up," Applied Energy, Elsevier, vol. 230(C), pages 1633-1644.
    16. Roustazadeh Sheikhyousefi, P. & Nasr Esfahany, M. & Colombo, A. & Franzetti, A. & Trasatti, S.P. & Cristiani, P., 2017. "Investigation of different configurations of microbial fuel cells for the treatment of oilfield produced water," Applied Energy, Elsevier, vol. 192(C), pages 457-465.
    17. Khan, M.Z. & Nizami, A.S. & Rehan, M. & Ouda, O.K.M. & Sultana, S. & Ismail, I.M. & Shahzad, K., 2017. "Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia," Applied Energy, Elsevier, vol. 185(P1), pages 410-420.
    18. Giulia Massaglia & Adriano Sacco & Alain Favetto & Luciano Scaltrito & Sergio Ferrero & Roberto Mo & Candido F. Pirri & Marzia Quaglio, 2021. "Integration of Portable Sedimentary Microbial Fuel Cells in Autonomous Underwater Vehicles," Energies, MDPI, vol. 14(15), pages 1-12, July.
    19. ElMekawy, Ahmed & Hegab, Hanaa M. & Vanbroekhoven, Karolien & Pant, Deepak, 2014. "Techno-productive potential of photosynthetic microbial fuel cells through different configurations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 617-627.
    20. Jiseon You & Lauren Wallis & Nevena Radisavljevic & Grzegorz Pasternak & Vincenzo M. Sglavo & Martin M Hanczyc & John Greenman & Ioannis Ieropoulos, 2019. "A Comprehensive Study of Custom-Made Ceramic Separators for Microbial Fuel Cells: Towards “Living” Bricks," Energies, MDPI, vol. 12(21), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:271:y:2020:i:c:s0306261920306966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.