Fungi-Based Microbial Fuel Cells
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lai, Chi-Yung & Wu, Chih-Hung & Meng, Chui-Ting & Lin, Chi-Wen, 2017. "Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode," Applied Energy, Elsevier, vol. 188(C), pages 392-398.
- Wu, Chao & Liu, Xian-Wei & Li, Wen-Wei & Sheng, Guo-Ping & Zang, Guo-Long & Cheng, Yuan-Yuan & Shen, Nan & Yang, Yi-Pei & Yu, Han-Qing, 2012. "A white-rot fungus is used as a biocathode to improve electricity production of a microbial fuel cell," Applied Energy, Elsevier, vol. 98(C), pages 594-596.
- Ashley E. Franks & Kelly P. Nevin, 2010. "Microbial Fuel Cells, A Current Review," Energies, MDPI, vol. 3(5), pages 1-21, April.
- Rahimnejad, Mostafa & Ghoreyshi, Ali Asghar & Najafpour, Ghasem & Jafary, Tahereh, 2011. "Power generation from organic substrate in batch and continuous flow microbial fuel cell operations," Applied Energy, Elsevier, vol. 88(11), pages 3999-4004.
- Renata Toczyłowska-Mamińska & Karolina Szymona & Patryk Król & Karol Gliniewicz & Katarzyna Pielech-Przybylska & Monika Kloch & Bruce E. Logan, 2018. "Evolving Microbial Communities in Cellulose-Fed Microbial Fuel Cell," Energies, MDPI, vol. 11(1), pages 1-12, January.
- Prasun Kumar & Kuppam Chandrasekhar & Archana Kumari & Ezhaveni Sathiyamoorthi & Beom Soo Kim, 2018. "Electro-Fermentation in Aid of Bioenergy and Biopolymers," Energies, MDPI, vol. 11(2), pages 1-20, February.
- David V. P. Sanchez & Daniel Jacobs & Kelvin Gregory & Jiyong Huang & Yushi Hu & Radisav Vidic & Minhee Yun, 2015. "Changes in Carbon Electrode Morphology Affect Microbial Fuel Cell Performance with Shewanella oneidensis MR-1," Energies, MDPI, vol. 8(3), pages 1-13, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Frattini, Domenico & Accardo, Grazia & Duarte, Kimberley D.Z. & Kim, Do-Heyoung & Kwon, Yongchai, 2020. "Improved biofilm adhesion and electrochemical properties of a graphite-cement composite with silica nanoflowers versus two benchmark carbon felts," Applied Energy, Elsevier, vol. 261(C).
- Duarte, Kimberley D.Z. & Frattini, Domenico & Kwon, Yongchai, 2019. "High performance yeast-based microbial fuel cells by surfactant-mediated gold nanoparticles grown atop a carbon felt anode," Applied Energy, Elsevier, vol. 256(C).
- Toczyłowska-Mamińska, Renata & Pielech-Przybylska, Katarzyna & Sekrecka-Belniak, Anna & Dziekońska-Kubczak, Urszula, 2020. "Stimulation of electricity production in microbial fuel cells via regulation of syntrophic consortium development," Applied Energy, Elsevier, vol. 271(C).
- Rusyn, Iryna, 2021. "Role of microbial community and plant species in performance of plant microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Yun-Hai & Wang, Bai-Shi & Pan, Bin & Chen, Qing-Yun & Yan, Wei, 2013. "Electricity production from a bio-electrochemical cell for silver recovery in alkaline media," Applied Energy, Elsevier, vol. 112(C), pages 1337-1341.
- Asiah Sukri & Raihan Othman & Firdaus Abd-Wahab & Noraini M. Noor, 2021. "Self-Sustaining Bioelectrochemical Cell from Fungal Degradation of Lignin-Rich Agrowaste," Energies, MDPI, vol. 14(8), pages 1-11, April.
- Wang, Yong-Peng & Liu, Xian-Wei & Li, Wen-Wei & Li, Feng & Wang, Yun-Kun & Sheng, Guo-Ping & Zeng, Raymond J. & Yu, Han-Qing, 2012. "A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment," Applied Energy, Elsevier, vol. 98(C), pages 230-235.
- Lobato, Justo & González del Campo, Araceli & Fernández, Francisco J. & Cañizares, Pablo & Rodrigo, Manuel A., 2013. "Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae," Applied Energy, Elsevier, vol. 110(C), pages 220-226.
- Liu, Shu-Hui & Lai, Yu-Chuan & Lin, Chi-Wen, 2019. "Enhancement of power generation by microbial fuel cells in treating toluene-contaminated groundwater: Developments of composite anodes with various compositions," Applied Energy, Elsevier, vol. 233, pages 922-929.
- Zeng, Qingyi & Bai, Jing & Li, Jinhua & Li, Linsen & Xia, Ligang & Zhou, Baoxue & Sun, Yugang, 2018. "Highly-stable and efficient photocatalytic fuel cell based on an epitaxial TiO2/WO3/W nanothorn photoanode and enhanced radical reactions for simultaneous electricity production and wastewater treatme," Applied Energy, Elsevier, vol. 220(C), pages 127-137.
- Yimeng Feng & Xuya Zhu & Xiulin Huang & Fengxiang Li, 2025. "New Advances in Bioelectrochemical Systems in the Degradation of Polycyclic Aromatic Hydrocarbons: Source, Degradation Pathway, and Microbial Community," Energies, MDPI, vol. 18(1), pages 1-34, January.
- Slate, Anthony J. & Whitehead, Kathryn A. & Brownson, Dale A.C. & Banks, Craig E., 2019. "Microbial fuel cells: An overview of current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 60-81.
- Renata Toczyłowska-Mamińska & Karolina Szymona & Patryk Król & Karol Gliniewicz & Katarzyna Pielech-Przybylska & Monika Kloch & Bruce E. Logan, 2018. "Evolving Microbial Communities in Cellulose-Fed Microbial Fuel Cell," Energies, MDPI, vol. 11(1), pages 1-12, January.
- Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
- Paweł P. Włodarczyk & Barbara Włodarczyk, 2018. "Microbial Fuel Cell with Ni–Co Cathode Powered with Yeast Wastewater," Energies, MDPI, vol. 11(11), pages 1-9, November.
- Mashkour, Mehrdad & Rahimnejad, Mostafa & Mashkour, Mahdi & Soavi, Francesca, 2021. "Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly," Applied Energy, Elsevier, vol. 282(PA).
- Kabutey, Felix Tetteh & Zhao, Qingliang & Wei, Liangliang & Ding, Jing & Antwi, Philip & Quashie, Frank Koblah & Wang, Weiye, 2019. "An overview of plant microbial fuel cells (PMFCs): Configurations and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 402-414.
- Zhou, Lean & Liao, Chengmei & Li, Tian & An, Jingkun & Du, Qing & Wan, Lili & Li, Nan & Pan, Xiaoqiang & Wang, Xin, 2018. "Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 199-206.
- David Valero & Carlos Rico & Blondy Canto-Canché & Jorge Arturo Domínguez-Maldonado & Raul Tapia-Tussell & Alberto Cortes-Velazquez & Liliana Alzate-Gaviria, 2018. "Enhancing Biochemical Methane Potential and Enrichment of Specific Electroactive Communities from Nixtamalization Wastewater using Granular Activated Carbon as a Conductive Material," Energies, MDPI, vol. 11(8), pages 1-19, August.
- Barbara Włodarczyk & Paweł P. Włodarczyk, 2023. "Electricity Production from Yeast Wastewater in Membrane-Less Microbial Fuel Cell with Cu-Ag Cathode," Energies, MDPI, vol. 16(6), pages 1-13, March.
- Choudhury, Payel & Uday, Uma Shankar Prasad & Mahata, Nibedita & Nath Tiwari, Onkar & Narayan Ray, Rup & Kanti Bandyopadhyay, Tarun & Bhunia, Biswanath, 2017. "Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 372-389.
- Sameer Al-Asheh & Yousef Al-Assaf & Ahmed Aidan, 2020. "Single-Chamber Microbial Fuel Cells’ Behavior at Different Operational Scenarios," Energies, MDPI, vol. 13(20), pages 1-11, October.
- Wenguo Wu & Hao Niu & Dayun Yang & Shi-Bin Wang & Jiefu Wang & Jia Lin & Chaoyi Hu, 2019. "Controlled Layer-By-Layer Deposition of Carbon Nanotubes on Electrodes for Microbial Fuel Cells," Energies, MDPI, vol. 12(3), pages 1-16, January.
- Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2827-:d:176933. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.