IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v148y2021ics1364032121006535.html
   My bibliography  Save this article

Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer

Author

Listed:
  • Li, Lei
  • Xu, Ying
  • Dai, Xiaohu
  • Dai, Lingling

Abstract

The inefficiency of interspecies electron transfer between syntrophic bacteria and methanogens typically restricts the reaction rates and methanogenesis efficiency of anaerobic digestion (AD) of organic waste. Direct interspecies electron transfer (DIET) has been proposed as a pathway that may enhance AD performance by increasing electron transfer efficiency. This paper comprehensively reviews the main principles and mechanisms of DIET between syntrophic bacteria and methanogens in AD, summarizes strategies for the regulation and enhancement of DIET in AD, and discusses the role of DIET in improving AD efficiency. Literature research demonstrate that c-type cytochromes and e-pili are two major functional components for the cell-to-cell electron transfer and the supplementation of ethanol-enriched substrates along with conductive materials have been proven to be efficient for DIET establishment. It is also confirmed that DIET has the great potential for shortening the start-up period, promoting organic degradation, and enhancing methane production in the AD of organic waste. Furthermore, the main knowledge gaps in the profound understanding of DIET, including the effect of multimedia environment, the establishment of mathematical model and the realization of engineering application, are identified, and the future perspectives are proposed for DIET applications in the AD of organic waste. This paper thus highlights important references and directions that will support research to enhance the DIET pathway and therefore the AD of organic waste.

Suggested Citation

  • Li, Lei & Xu, Ying & Dai, Xiaohu & Dai, Lingling, 2021. "Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121006535
    DOI: 10.1016/j.rser.2021.111367
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121006535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Vikas & Nabaterega, Resty & Khoei, Shiva & Eskicioglu, Cigdem, 2021. "Insight into interactions between syntrophic bacteria and archaea in anaerobic digestion amended with conductive materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Phuc T. Ha & Stephen R. Lindemann & Liang Shi & Alice C. Dohnalkova & James K. Fredrickson & Michael T. Madigan & Haluk Beyenal, 2017. "Syntrophic anaerobic photosynthesis via direct interspecies electron transfer," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    3. Zhao, Zhiqiang & Li, Yang & Zhang, Yaobin, 2021. "Engineering enhanced anaerobic digestion: Benefits of ethanol fermentation pretreatment for boosting direct interspecies electron transfer," Energy, Elsevier, vol. 228(C).
    4. Gemma Reguera & Kevin D. McCarthy & Teena Mehta & Julie S. Nicoll & Mark T. Tuominen & Derek R. Lovley, 2005. "Extracellular electron transfer via microbial nanowires," Nature, Nature, vol. 435(7045), pages 1098-1101, June.
    5. Zhao, Zhiqiang & Zhang, Yaobin, 2019. "Application of ethanol-type fermentation in establishment of direct interspecies electron transfer: A practical engineering case study," Renewable Energy, Elsevier, vol. 136(C), pages 846-855.
    6. Chen, Yinguang & Liu, Hui & Zheng, Xiong & Wang, Xin & Wu, Jiang, 2017. "New method for enhancement of bioenergy production from municipal organic wastes via regulation of anaerobic fermentation process," Applied Energy, Elsevier, vol. 196(C), pages 190-198.
    7. Shawn E. McGlynn & Grayson L. Chadwick & Christopher P. Kempes & Victoria J. Orphan, 2015. "Single cell activity reveals direct electron transfer in methanotrophic consortia," Nature, Nature, vol. 526(7574), pages 531-535, October.
    8. Gahyun Baek & Jaai Kim & Jinsu Kim & Changsoo Lee, 2018. "Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion," Energies, MDPI, vol. 11(1), pages 1-18, January.
    9. Hindatu, Y. & Annuar, M.S.M. & Gumel, A.M., 2017. "Mini-review: Anode modification for improved performance of microbial fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 236-248.
    10. Wang, Zixin & Wang, Tengfei & Si, Buchun & Watson, Jamison & Zhang, Yuanhui, 2021. "Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsui, To-Hung & Zhang, Le & Zhang, Jingxin & Dai, Yanjun & Tong, Yen Wah, 2022. "Engineering interface between bioenergy recovery and biogas desulfurization: Sustainability interplays of biochar application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Li, Lei & Liu, Haoyu & Chen, Yongdong & Yang, Donghai & Cai, Chen & Yuan, Shijie & Dai, Xiaohu, 2022. "Effect of Magnet-Fe3O4 composite structure on methane production during anaerobic sludge digestion: Establishment of direct interspecies electron transfer," Renewable Energy, Elsevier, vol. 188(C), pages 52-60.
    3. Ding, Lingkan & Wang, Yuchuan & Lin, Hongjian & van Lierop, Leif & Hu, Bo, 2022. "Facilitating solid-state anaerobic digestion of food waste via bio-electrochemical treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    4. Iliana Dompara & Angeliki Maragkaki & Nikolaos Papastefanakis & Christina Floraki & Dimitra Vernardou & Thrassyvoulos Manios, 2023. "Effects of Different Materials on Biogas Production during Anaerobic Digestion of Food Waste," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    5. Deng, Chen & Kang, Xihui & Lin, Richen & Wu, Benteng & Ning, Xue & Wall, David & Murphy, Jerry D., 2023. "Boosting biogas production from recalcitrant lignin-based feedstock by adding lignin-derived carbonaceous materials within the anaerobic digestion process," Energy, Elsevier, vol. 278(PA).
    6. Tae-Bong Kim & Jun-Hyeong Lee & Young-Man Yoon, 2024. "Residence Time Reduction in Anaerobic Reactors: Investigating the Economic Benefits of Magnetite-Induced Direct Interspecies Electron Transfer Mechanism," Energies, MDPI, vol. 17(2), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zixin & Wang, Tengfei & Si, Buchun & Watson, Jamison & Zhang, Yuanhui, 2021. "Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Yang, Min & Watson, Jamison & Wang, Zixin & Si, Buchun & Jiang, Weizhong & Zhou, Bo & Zhang, Yuanhui, 2022. "Understanding and design of two-stage fermentation: A perspective of interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Jung, Heejung & Kim, Danbee & Choi, Hyungmin & Lee, Changsoo, 2022. "A review of technologies for in-situ sulfide control in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Jafar Ali & Aaqib Sohail & Lei Wang & Muhammad Rizwan Haider & Shahi Mulk & Gang Pan, 2018. "Electro-Microbiology as a Promising Approach Towards Renewable Energy and Environmental Sustainability," Energies, MDPI, vol. 11(7), pages 1-30, July.
    5. Kaoming Zhang & Yuepeng Deng & Zhiquan Liu & Yiping Feng & Chun Hu & Zhu Wang, 2023. "Biochar Facilitated Direct Interspecies Electron Transfer in Anaerobic Digestion to Alleviate Antibiotics Inhibition and Enhance Methanogenesis: A Review," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
    6. Yan, Yixin & Yan, Miao & Ravenni, Giulia & Angelidaki, Irini & Fu, Dafang & Fotidis, Ioannis A., 2022. "Biochar enhanced bioaugmentation provides long-term tolerance under increasing ammonia toxicity in continuous biogas reactors," Renewable Energy, Elsevier, vol. 195(C), pages 590-597.
    7. Dawid Nosek & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2020. "Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells," Energies, MDPI, vol. 13(24), pages 1-22, December.
    8. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Yuming Wang & Yi Li & Longfei Wang & Wenlong Zhang & Thomas Bürgi, 2023. "Bio-Coated Graphitic Carbon Nitrides for Enhanced Nitrobenzene Degradation: Roles of Extracellular Electron Transfer," Sustainability, MDPI, vol. 15(23), pages 1-16, November.
    10. Renata Toczyłowska-Mamińska & Mariusz Ł. Mamiński, 2022. "Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology," Energies, MDPI, vol. 15(19), pages 1-14, September.
    11. Aritro Banerjee & Rajnish Kaur Calay & Mohamad Mustafa, 2022. "Review on Material and Design of Anode for Microbial Fuel Cell," Energies, MDPI, vol. 15(6), pages 1-17, March.
    12. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Liu, Yuanzhe & Lai, Yen-Jung Sean & Rittmann, Bruce E., 2020. "Increased anode respiration enhances utilization of short-chain fatty acid and lipid wet-extraction from Scenedesmus acutus biomass in electro-selective fermentation," Renewable Energy, Elsevier, vol. 148(C), pages 374-379.
    14. ElMekawy, Ahmed & Hegab, Hanaa M. & Losic, Dusan & Saint, Christopher P. & Pant, Deepak, 2017. "Applications of graphene in microbial fuel cells: The gap between promise and reality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1389-1403.
    15. Abbas, Yasir & Yun, Sining & Wang, Ziqi & Zhang, Yongwei & Zhang, Xianmei & Wang, Kaijun, 2021. "Recent advances in bio-based carbon materials for anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Shen, Liang & Zhao, Qingchuan & Wu, Xuee & Li, Xiangzhen & Li, Qingbiao & Wang, Yuanpeng, 2016. "Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1358-1367.
    17. Xianshu Liu & Jie Ding & Nanqi Ren & Qingyue Tong & Luyan Zhang, 2016. "The Detoxification and Degradation of Benzothiazole from the Wastewater in Microbial Electrolysis Cells," IJERPH, MDPI, vol. 13(12), pages 1-12, December.
    18. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    19. Tajdid Khajeh, Rana & Aber, Soheil & Zarei, Mahmoud, 2020. "Comparison of NiCo2O4, CoNiAl-LDH, and CoNiAl-LDH@NiCo2O4 performances as ORR catalysts in MFC cathode," Renewable Energy, Elsevier, vol. 154(C), pages 1263-1271.
    20. Scott A. Klasek & Wei-Li Hong & Marta E. Torres & Stella Ross & Katelyn Hostetler & Alexey Portnov & Friederike Gründger & Frederick S. Colwell, 2021. "Distinct methane-dependent biogeochemical states in Arctic seafloor gas hydrate mounds," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121006535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.