IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v148y2020icp374-379.html
   My bibliography  Save this article

Increased anode respiration enhances utilization of short-chain fatty acid and lipid wet-extraction from Scenedesmus acutus biomass in electro-selective fermentation

Author

Listed:
  • Liu, Yuanzhe
  • Lai, Yen-Jung Sean
  • Rittmann, Bruce E.

Abstract

Electro-selective fermentation (ESF) can improve lipid extraction from Scenedesmus acutus biomass using green solvents like hexane and 1:1 hexane: isopropanol, but accumulation of short-chain fatty acids (SCFAs) wastes useable electrons. To eliminate the electron loss, we designed a flat-plate microbial electrolytic cell (MEC) to have a large anode area for a biofilm of anode respiring bacteria (ARB) that oxidize the SCFAs and generate current that produces H2 gas at the cathode. In 9-day batch tests of ESF in the flat-plate MEC, 18% of the total electrons in the feeding biomass were scavenged by the ARB biofilm and converted to current, leaving minimal concentrations of SCFAs. Extraction with two solvents -- 1:1 hexane:isopropanol and 100% hexane – was evaluated at the end of the 9-day experiments. 30% of the total lipids became hexane-extractable with ESF, compared to <1% in the feeding biomass. Furthermore, hexane had 100% selectivity towards saturated long-chain fatty acids (LCFAs), which are superior for biofuel production. Thus, ESF improved the quantity and quality of extractable FAME-based biofuel from S. acutus, while directing electron equivalents in SCFAs to current and H2 generation at the cathode.

Suggested Citation

  • Liu, Yuanzhe & Lai, Yen-Jung Sean & Rittmann, Bruce E., 2020. "Increased anode respiration enhances utilization of short-chain fatty acid and lipid wet-extraction from Scenedesmus acutus biomass in electro-selective fermentation," Renewable Energy, Elsevier, vol. 148(C), pages 374-379.
  • Handle: RePEc:eee:renene:v:148:y:2020:i:c:p:374-379
    DOI: 10.1016/j.renene.2019.10.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119315356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gemma Reguera & Kevin D. McCarthy & Teena Mehta & Julie S. Nicoll & Mark T. Tuominen & Derek R. Lovley, 2005. "Extracellular electron transfer via microbial nanowires," Nature, Nature, vol. 435(7045), pages 1098-1101, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Liang & Zhao, Qingchuan & Wu, Xuee & Li, Xiangzhen & Li, Qingbiao & Wang, Yuanpeng, 2016. "Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1358-1367.
    2. Paweł P. Włodarczyk & Barbara Włodarczyk, 2018. "Microbial Fuel Cell with Ni–Co Cathode Powered with Yeast Wastewater," Energies, MDPI, vol. 11(11), pages 1-9, November.
    3. Wang, Zixin & Wang, Tengfei & Si, Buchun & Watson, Jamison & Zhang, Yuanhui, 2021. "Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Jieni Fu & Weidong Zhu & Xiangmei Liu & Chunyong Liang & Yufeng Zheng & Zhaoyang Li & Yanqin Liang & Dong Zheng & Shengli Zhu & Zhenduo Cui & Shuilin Wu, 2021. "Self-activating anti-infection implant," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Barbara Włodarczyk & Paweł P. Włodarczyk, 2023. "Electricity Production from Yeast Wastewater in Membrane-Less Microbial Fuel Cell with Cu-Ag Cathode," Energies, MDPI, vol. 16(6), pages 1-13, March.
    6. Qi, Lijuan & Wu, Jiansong & Chen, Ye & Wen, Qing & Xu, Haitao & Wang, Yuyang, 2020. "Shape-controllable binderless self-supporting hydrogel anode for microbial fuel cells," Renewable Energy, Elsevier, vol. 156(C), pages 1325-1335.
    7. Choudhury, Payel & Uday, Uma Shankar Prasad & Mahata, Nibedita & Nath Tiwari, Onkar & Narayan Ray, Rup & Kanti Bandyopadhyay, Tarun & Bhunia, Biswanath, 2017. "Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 372-389.
    8. Azize Ayol & Luciana Peixoto & Tugba Keskin & Haris Nalakath Abubackar, 2021. "Reactor Designs and Configurations for Biological and Bioelectrochemical C1 Gas Conversion: A Review," IJERPH, MDPI, vol. 18(21), pages 1-36, November.
    9. Venkata Mohan, S. & Velvizhi, G. & Annie Modestra, J. & Srikanth, S., 2014. "Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 779-797.
    10. Jafar Ali & Aaqib Sohail & Lei Wang & Muhammad Rizwan Haider & Shahi Mulk & Gang Pan, 2018. "Electro-Microbiology as a Promising Approach Towards Renewable Energy and Environmental Sustainability," Energies, MDPI, vol. 11(7), pages 1-30, July.
    11. Rusyn, Iryna, 2021. "Role of microbial community and plant species in performance of plant microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. María José De La Fuente & Carlos Gallardo-Bustos & Rodrigo De la Iglesia & Ignacio T. Vargas, 2022. "Microbial Electrochemical Technologies for Sustainable Nitrogen Removal in Marine and Coastal Environments," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    13. Guo, Xuan & Zhan, Yali & Chen, Chunmao & Cai, Bin & Wang, Yu & Guo, Shaohui, 2016. "Influence of packing material characteristics on the performance of microbial fuel cells using petroleum refinery wastewater as fuel," Renewable Energy, Elsevier, vol. 87(P1), pages 437-444.
    14. Li, Lei & Xu, Ying & Dai, Xiaohu & Dai, Lingling, 2021. "Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Yuming Wang & Yi Li & Longfei Wang & Wenlong Zhang & Thomas Bürgi, 2023. "Bio-Coated Graphitic Carbon Nitrides for Enhanced Nitrobenzene Degradation: Roles of Extracellular Electron Transfer," Sustainability, MDPI, vol. 15(23), pages 1-16, November.
    16. Renata Toczyłowska-Mamińska & Mariusz Ł. Mamiński, 2022. "Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology," Energies, MDPI, vol. 15(19), pages 1-14, September.
    17. ElMekawy, Ahmed & Hegab, Hanaa M. & Losic, Dusan & Saint, Christopher P. & Pant, Deepak, 2017. "Applications of graphene in microbial fuel cells: The gap between promise and reality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1389-1403.
    18. Xianshu Liu & Jie Ding & Nanqi Ren & Qingyue Tong & Luyan Zhang, 2016. "The Detoxification and Degradation of Benzothiazole from the Wastewater in Microbial Electrolysis Cells," IJERPH, MDPI, vol. 13(12), pages 1-12, December.
    19. Xiao, Shuai & Fu, Qian & Li, Zhuo & Li, Jun & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2021. "Solar-driven biological inorganic hybrid systems for the production of solar fuels and chemicals from carbon dioxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Chandrasekhar, K. & Mohamed, Azah & Azman, Nadia Farhana & Logroño, Washington & Simayi, Yibadatihan & Hamid, Aidil Abdul, 2016. "Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 501-525.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:148:y:2020:i:c:p:374-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.