IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3270-d185148.html
   My bibliography  Save this article

Variation in the Distribution of Hydrogen Producers from the Clostridiales Order in Biogas Reactors Depending on Different Input Substrates

Author

Listed:
  • Martin Černý

    (Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic)

  • Monika Vítězová

    (Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic)

  • Tomáš Vítěz

    (Department of Agricultural, Food, and Environmental Engineering, Faculty of AgriSciences, Mendel University, Brno, Zemědelska 1, 61300 Brno, Czech Republic)

  • Milan Bartoš

    (Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic)

  • Ivan Kushkevych

    (Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic)

Abstract

With growing demand for clean and cheap energy resources, biogas production is emerging as an ideal solution, as it provides relatively cheap and clean energy, while also tackling the problematic production of excessive organic waste from crops and animal agriculture. Behind this process stands a variety of anaerobic microorganisms, which turn organic substrates into valuable biogas. The biogas itself is a mixture of gases, produced mostly as metabolic byproducts of the microorganisms, such as methane, hydrogen, or carbon dioxide. Hydrogen itself figures as a potent bio-fuel, however in many bioreactors it serves as the main substrate of methanogenesis, thus potentially limiting biogas yield. With help of modern sequencing techniques, we tried to evaluate the composition in eight bioreactors using different input materials, showing shifts in the microbial consortia depending on the substrate itself. In this paper, we provide insight on the occurrence of potentially harmful microorganisms such as Clostridium novyi and Clostridium septicum , as well as key genera in hydrogen production, such as Clostridium stercorarium , Mobilitalea sp., Herbinix sp., Herbivorax sp., and Acetivibrio sp.

Suggested Citation

  • Martin Černý & Monika Vítězová & Tomáš Vítěz & Milan Bartoš & Ivan Kushkevych, 2018. "Variation in the Distribution of Hydrogen Producers from the Clostridiales Order in Biogas Reactors Depending on Different Input Substrates," Energies, MDPI, vol. 11(12), pages 1-10, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3270-:d:185148
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3270/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3270/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gahyun Baek & Jaai Kim & Jinsu Kim & Changsoo Lee, 2018. "Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion," Energies, MDPI, vol. 11(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei-Hsin Chen & Keat Teong Lee & Hwai Chyuan Ong, 2019. "Biofuel and Bioenergy Technology," Energies, MDPI, vol. 12(2), pages 1-12, January.
    2. Juhee Shin & Si-Kyung Cho & Joonyeob Lee & Kwanghyun Hwang & Jae Woo Chung & Hae-Nam Jang & Seung Gu Shin, 2019. "Performance and Microbial Community Dynamics in Anaerobic Digestion of Waste Activated Sludge: Impact of Immigration," Energies, MDPI, vol. 12(3), pages 1-15, February.
    3. Hanane Bouchareb & Samia Semcheddine & Mohamed Naguib Harmas & Kouider Nacer M’sirdi & Aziz Naamane, 2019. "Virtual Sensors to Drive Anaerobic Digestion under a Synergetic Controller," Energies, MDPI, vol. 12(3), pages 1-18, January.
    4. Spyridon Achinas & Johan Horjus & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "A PESTLE Analysis of Biofuels Energy Industry in Europe," Sustainability, MDPI, vol. 11(21), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aguilar-Moreno, Guadalupe Stefanny & Navarro-Cerón, Elizabeth & Velázquez-Hernández, Azucena & Hernández-Eugenio, Guadalupe & Aguilar-Méndez, Miguel Ángel & Espinosa-Solares, Teodoro, 2020. "Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles," Renewable Energy, Elsevier, vol. 147(P1), pages 204-213.
    2. David Valero & Carlos Rico & Blondy Canto-Canché & Jorge Arturo Domínguez-Maldonado & Raul Tapia-Tussell & Alberto Cortes-Velazquez & Liliana Alzate-Gaviria, 2018. "Enhancing Biochemical Methane Potential and Enrichment of Specific Electroactive Communities from Nixtamalization Wastewater using Granular Activated Carbon as a Conductive Material," Energies, MDPI, vol. 11(8), pages 1-19, August.
    3. Leonel E. Amabilis-Sosa & Edgardo I. Valenzuela & Javier A. Quezada-Renteria & Aurora M. Pat-Espadas, 2022. "Biochar-Assisted Bioengineered Strategies for Metal Removal: Mechanisms, Key Considerations, and Perspectives for the Treatment of Solid and Liquid Matrixes," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    4. Zhi Wang & Ying Guo & Weiwei Wang & Liumeng Chen & Yongming Sun & Tao Xing & Xiaoying Kong, 2021. "Effect of Biochar Addition on the Microbial Community and Methane Production in the Rapid Degradation Process of Corn Straw," Energies, MDPI, vol. 14(8), pages 1-13, April.
    5. Qiu, L. & Deng, Y.F. & Wang, F. & Davaritouchaee, M. & Yao, Y.Q., 2019. "A review on biochar-mediated anaerobic digestion with enhanced methane recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Modestra, J. Annie & Reddy, C. Nagendranatha & Krishna, K. Vamshi & Min, Booki & Mohan, S. Venkata, 2020. "Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell," Renewable Energy, Elsevier, vol. 149(C), pages 424-434.
    7. Jafar Ali & Aaqib Sohail & Lei Wang & Muhammad Rizwan Haider & Shahi Mulk & Gang Pan, 2018. "Electro-Microbiology as a Promising Approach Towards Renewable Energy and Environmental Sustainability," Energies, MDPI, vol. 11(7), pages 1-30, July.
    8. Spyridon Achinas & Johan Horjus & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "A PESTLE Analysis of Biofuels Energy Industry in Europe," Sustainability, MDPI, vol. 11(21), pages 1-24, October.
    9. Jung, Heejung & Kim, Danbee & Choi, Hyungmin & Lee, Changsoo, 2022. "A review of technologies for in-situ sulfide control in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    10. Li, Lei & Xu, Ying & Dai, Xiaohu & Dai, Lingling, 2021. "Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Abbas, Yasir & Yun, Sining & Wang, Ziqi & Zhang, Yongwei & Zhang, Xianmei & Wang, Kaijun, 2021. "Recent advances in bio-based carbon materials for anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    14. Wenyao Jin & Xiaochen Xu & Fenglin Yang, 2018. "Application of Rumen Microorganisms for Enhancing Biogas Production of Corn Straw and Livestock Manure in a Pilot-Scale Anaerobic Digestion System: Performance and Microbial Community Analysis," Energies, MDPI, vol. 11(4), pages 1-17, April.
    15. Mahsa Alimohammadi & Goksel N. Demirer, 2022. "Upgrading Anaerobic Sludge Digestion by Using an Oil Refinery By-Product," Sustainability, MDPI, vol. 14(23), pages 1-11, November.
    16. Xia Yang & Qiong Zhang & Sarina J. Ergas, 2023. "Enhancement of System and Environmental Performance of High Solids Anaerobic Digestion of Lignocellulosic Banana Waste by Biochar Addition," Sustainability, MDPI, vol. 15(8), pages 1-20, April.
    17. Susanne Theuerl & Johanna Klang & Annette Prochnow, 2019. "Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review," Energies, MDPI, vol. 12(3), pages 1-20, January.
    18. Byung-Kyu Ahn & Tae-Hoon Kim & Jiyun Seon & Seung-Kyun Park & Yeo-Myeong Yun, 2021. "Mill Scale Addition to Reduce Hydrogen Sulfide Production in Anaerobic Digestion," Energies, MDPI, vol. 14(20), pages 1-8, October.
    19. Baek, Gahyun & Kim, Jinsu & Lee, Changsoo, 2021. "Effectiveness of electromagnetic in situ magnetite capture in anaerobic sequencing batch treatment of dairy effluent under electro-syntrophic conditions," Renewable Energy, Elsevier, vol. 179(C), pages 105-115.
    20. Michele Ponzelli & Hiep Nguyen & Jörg E. Drewes & Konrad Koch, 2023. "Improved Recovery of Overloaded Anaerobic Batch Reactors by Graphene Oxide," Sustainability, MDPI, vol. 15(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3270-:d:185148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.