IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6542-d654123.html
   My bibliography  Save this article

Mill Scale Addition to Reduce Hydrogen Sulfide Production in Anaerobic Digestion

Author

Listed:
  • Byung-Kyu Ahn

    (Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Korea)

  • Tae-Hoon Kim

    (Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Korea)

  • Jiyun Seon

    (Seojin Energy Co., Ltd., 410, Jeongseojin-ro, Seogu, Incheon 22689, Korea)

  • Seung-Kyun Park

    (Seojin Energy Co., Ltd., 410, Jeongseojin-ro, Seogu, Incheon 22689, Korea)

  • Yeo-Myeong Yun

    (Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Korea)

Abstract

Direct addition of sulfur-reducing agents during anaerobic digestion (AD) is very effective in controlling hydrogen sulfide (H 2 S) content in biogas, although one major problem is the high operational cost due to the large amount of chemicals used. The objective of this study was to remove H 2 S using a waste mill scale (MS) as a sulfur-reducing agent. To evaluate its feasibility, MS was added to AD fed with food waste (FW) at concentrations between 0 and 160 g MS/kg total chemical oxygen demand (TCOD) during the batch test, and the experimental results were compared to those of the batch test with the addition of iron chloride (FeCl 3 ). Both FeCl 3 and MS played an important role as electro-conductive materials in improving methane productivity by promoting direct interspecies electron transfer. An increase in H 2 S removal efficiency was observed with increases in both materials. In total, 30%, 60%, and 90% of H 2 S production based on the maximum sulfur in the form of H 2 S (control) was 3.7, 9.4, and 23.8 g FeCl 3 /kg TCOD and 13.3, 34.1, and 86.2 g MS/kg TCOD, respectively. This finding indicates that MS can be used as a sulfur-reducing agent substitute for H 2 S removal in AD fed with FW.

Suggested Citation

  • Byung-Kyu Ahn & Tae-Hoon Kim & Jiyun Seon & Seung-Kyun Park & Yeo-Myeong Yun, 2021. "Mill Scale Addition to Reduce Hydrogen Sulfide Production in Anaerobic Digestion," Energies, MDPI, vol. 14(20), pages 1-8, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6542-:d:654123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    2. Gahyun Baek & Jaai Kim & Jinsu Kim & Changsoo Lee, 2018. "Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion," Energies, MDPI, vol. 11(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung, Heejung & Kim, Danbee & Choi, Hyungmin & Lee, Changsoo, 2022. "A review of technologies for in-situ sulfide control in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    4. Abbas, Yasir & Yun, Sining & Wang, Ziqi & Zhang, Yongwei & Zhang, Xianmei & Wang, Kaijun, 2021. "Recent advances in bio-based carbon materials for anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    6. Barbera, Elena & Menegon, Silvia & Banzato, Donatella & D'Alpaos, Chiara & Bertucco, Alberto, 2019. "From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context," Renewable Energy, Elsevier, vol. 135(C), pages 663-673.
    7. Yunesky Masip Macía & Pablo Rodríguez Machuca & Angel Alexander Rodríguez Soto & Roberto Carmona Campos, 2021. "Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    8. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    9. Martin Černý & Monika Vítězová & Tomáš Vítěz & Milan Bartoš & Ivan Kushkevych, 2018. "Variation in the Distribution of Hydrogen Producers from the Clostridiales Order in Biogas Reactors Depending on Different Input Substrates," Energies, MDPI, vol. 11(12), pages 1-10, November.
    10. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Aguilar-Moreno, Guadalupe Stefanny & Navarro-Cerón, Elizabeth & Velázquez-Hernández, Azucena & Hernández-Eugenio, Guadalupe & Aguilar-Méndez, Miguel Ángel & Espinosa-Solares, Teodoro, 2020. "Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles," Renewable Energy, Elsevier, vol. 147(P1), pages 204-213.
    12. Abdullah Ebrahem Ebrahemi & Mohamed Abdallah Bassiony & Thaer Mahmoud Ibrahim Syam & Samer Ahmed, 2020. "Investigating the effect of the air inlet temperature on the combustion characteristics of a spark ignition engine fueled by biogas," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 771-782, August.
    13. Abd, Ammar Ali & Othman, Mohd Roslee & Helwani, Zuchra & Kim, Jinsoo, 2023. "Waste to wheels: Performance comparison between pressure swing adsorption and amine-absorption technologies for upgrading biogas containing hydrogen sulfide to fuel grade standards," Energy, Elsevier, vol. 272(C).
    14. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Wenyao Jin & Xiaochen Xu & Fenglin Yang, 2018. "Application of Rumen Microorganisms for Enhancing Biogas Production of Corn Straw and Livestock Manure in a Pilot-Scale Anaerobic Digestion System: Performance and Microbial Community Analysis," Energies, MDPI, vol. 11(4), pages 1-17, April.
    16. David Valero & Carlos Rico & Blondy Canto-Canché & Jorge Arturo Domínguez-Maldonado & Raul Tapia-Tussell & Alberto Cortes-Velazquez & Liliana Alzate-Gaviria, 2018. "Enhancing Biochemical Methane Potential and Enrichment of Specific Electroactive Communities from Nixtamalization Wastewater using Granular Activated Carbon as a Conductive Material," Energies, MDPI, vol. 11(8), pages 1-19, August.
    17. Schipfer, F. & Mäki, E. & Schmieder, U. & Lange, N. & Schildhauer, T. & Hennig, C. & Thrän, D., 2022. "Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Mahsa Alimohammadi & Goksel N. Demirer, 2022. "Upgrading Anaerobic Sludge Digestion by Using an Oil Refinery By-Product," Sustainability, MDPI, vol. 14(23), pages 1-11, November.
    19. Hosseinipour, Sayed Amir & Mehrpooya, Mehdi, 2019. "Comparison of the biogas upgrading methods as a transportation fuel," Renewable Energy, Elsevier, vol. 130(C), pages 641-655.
    20. Leonel E. Amabilis-Sosa & Edgardo I. Valenzuela & Javier A. Quezada-Renteria & Aurora M. Pat-Espadas, 2022. "Biochar-Assisted Bioengineered Strategies for Metal Removal: Mechanisms, Key Considerations, and Perspectives for the Treatment of Solid and Liquid Matrixes," Sustainability, MDPI, vol. 14(24), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6542-:d:654123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.