IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v231y2018icp80-88.html
   My bibliography  Save this article

Integration of concentrating PVs in anaerobic digestion for biomethane production

Author

Listed:
  • Hao, Yong
  • Li, Wenjia
  • Tian, Zhenyu
  • Campana, Pietro Elia
  • Li, Hailong
  • Jin, Hongguang
  • Yan, Jinyue

Abstract

Biogas produced from anaerobic digestion processes is considered as an important alternative to natural gas and plays a key role in the emerging market for renewable energy. Aiming at achieving a more sustainable and efficient biomethane production, this work proposed a novel energy system, which integrates concentrating photovoltaic/thermal (C-PV/T) hybrid modules into a biogas plant with chemical absorption for biogas upgrading. The investigated energy system was optimized based on the data from an existing biogas plant, and its techno-economic feasibility was evaluated. Results show that about 7% of the heat consumption and 12% of the electricity consumption of the biogas plant can be covered by solar energy, by using the produced heat in a cascade way according to the operating temperature of different processes. The production of biomethane can also be improved by 25,800 N m3/yr (or 1.7%). The net present value of the integrated system is about 2.78 MSEK and the payback period is around 10 years. In order to further improve the economic performance, it is of great importance to lower the capital cost of the C-PV/T module.

Suggested Citation

  • Hao, Yong & Li, Wenjia & Tian, Zhenyu & Campana, Pietro Elia & Li, Hailong & Jin, Hongguang & Yan, Jinyue, 2018. "Integration of concentrating PVs in anaerobic digestion for biomethane production," Applied Energy, Elsevier, vol. 231(C), pages 80-88.
  • Handle: RePEc:eee:appene:v:231:y:2018:i:c:p:80-88
    DOI: 10.1016/j.apenergy.2018.09.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918314302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mokhtar, Marwan & Ali, Muhammad Tauha & Khalilpour, Rajab & Abbas, Ali & Shah, Nilay & Hajaj, Ahmed Al & Armstrong, Peter & Chiesa, Matteo & Sgouridis, Sgouris, 2012. "Solar-assisted Post-combustion Carbon Capture feasibility study," Applied Energy, Elsevier, vol. 92(C), pages 668-676.
    2. Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
    3. Qadir, Abdul & Mokhtar, Marwan & Khalilpour, Rajab & Milani, Dia & Vassallo, Anthony & Chiesa, Matteo & Abbas, Ali, 2013. "Potential for solar-assisted post-combustion carbon capture in Australia," Applied Energy, Elsevier, vol. 111(C), pages 175-185.
    4. Li, Wenjia & Ling, Yunyi & Liu, Xiangxin & Hao, Yong, 2017. "Performance analysis of a photovoltaic-thermochemical hybrid system prototype," Applied Energy, Elsevier, vol. 204(C), pages 939-947.
    5. Luthander, Rasmus & Widén, Joakim & Munkhammar, Joakim & Lingfors, David, 2016. "Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment," Energy, Elsevier, vol. 112(C), pages 221-231.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Marialuisa Napolitano & Maria Vicidomini, 2023. "Dynamic Simulation and Thermoeconomic Analysis of a Novel Hybrid Solar System for Biomethane Production by the Organic Fraction of Municipal Wastes," Energies, MDPI, vol. 16(6), pages 1-23, March.
    2. D'Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "RES-T trajectories and an integrated SWOT-AHP analysis for biomethane. Policy implications to support a green revolution in European transport," Energy Policy, Elsevier, vol. 138(C).
    3. Firouzi, Afshin & Meshkani, Ali, 2021. "Risk-based optimization of the debt service schedule in renewable energy project finance," Utilities Policy, Elsevier, vol. 70(C).
    4. Henry Wasajja & Saqr A. A. Al-Muraisy & Antonella L. Piaggio & Pamela Ceron-Chafla & Purushothaman Vellayani Aravind & Henri Spanjers & Jules B. van Lier & Ralph E. F. Lindeboom, 2021. "Improvement of Biogas Quality and Quantity for Small-Scale Biogas-Electricity Generation Application in off-Grid Settings: A Field-Based Study," Energies, MDPI, vol. 14(11), pages 1-20, May.
    5. Yu, Ying & Long, Enshen & Chen, Xi & Yang, Hongxing, 2019. "Testing and modelling an unglazed photovoltaic thermal collector for application in Sichuan Basin," Applied Energy, Elsevier, vol. 242(C), pages 931-941.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milani, Dia & Luu, Minh Tri & Nelson, Scott & Abbas, Ali, 2022. "Process control strategies for solar-powered carbon capture under transient solar conditions," Energy, Elsevier, vol. 239(PE).
    2. Wang, Fu & Zhao, Jun & Li, Hailong & Deng, Shuai & Yan, Jinyue, 2017. "Preliminary experimental study of post-combustion carbon capture integrated with solar thermal collectors," Applied Energy, Elsevier, vol. 185(P2), pages 1471-1480.
    3. Jordán, Pérez Sánchez & Javier Eduardo, Aguillón Martínez & Zdzislaw, Mazur Czerwiec & Alan Martín, Zavala Guzmán & Liborio, Huante Pérez & Jesús Antonio, Flores Zamudio & Mario Román, Díaz Guillén, 2019. "Techno-economic analysis of solar-assisted post-combustion carbon capture to a pilot cogeneration system in Mexico," Energy, Elsevier, vol. 167(C), pages 1107-1119.
    4. Khalilpour, Rajab & Milani, Dia & Qadir, Abdul & Chiesa, Matteo & Abbas, Ali, 2017. "A novel process for direct solvent regeneration via solar thermal energy for carbon capture," Renewable Energy, Elsevier, vol. 104(C), pages 60-75.
    5. Yang, Ning & Zhou, Yunlong & Ge, Xinzhe, 2019. "A flexible CO2 capture operation scheme design and evaluation of a coal-fired power plant integrated with a novel DCP and retrofitted solar system," Energy, Elsevier, vol. 170(C), pages 73-84.
    6. Parvareh, Forough & Sharma, Manish & Qadir, Abdul & Milani, Dia & Khalilpour, Rajab & Chiesa, Matteo & Abbas, Ali, 2014. "Integration of solar energy in coal-fired power plants retrofitted with carbon capture: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1029-1044.
    7. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    8. Guelpa, Elisa, 2021. "Impact of thermal masses on the peak load in district heating systems," Energy, Elsevier, vol. 214(C).
    9. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    10. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    11. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    12. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    13. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Khalilpour, Rajab, 2014. "Multi-level investment planning and scheduling under electricity and carbon market dynamics: Retrofit of a power plant with PCC (post-combustion carbon capture) processes," Energy, Elsevier, vol. 64(C), pages 172-186.
    15. Zhao, Kai & Tian, Zhenyu & Zhang, Jinrui & Lu, Buchu & Hao, Yong, 2023. "Methanol steam reforming reactor with fractal tree-shaped structures for photovoltaic–thermochemical hybrid power generation," Applied Energy, Elsevier, vol. 330(PB).
    16. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.
    17. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    18. Ganapathy, Harish & Steinmayer, Sascha & Shooshtari, Amir & Dessiatoun, Serguei & Ohadi, Michael M. & Alshehhi, Mohamed, 2016. "Process intensification characteristics of a microreactor absorber for enhanced CO2 capture," Applied Energy, Elsevier, vol. 162(C), pages 416-427.
    19. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    20. Shi, Mengshu & Huang, Yuansheng & Lin, Hongyu, 2023. "Research on power to hydrogen optimization and profit distribution of microgrid cluster considering shared hydrogen storage," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:231:y:2018:i:c:p:80-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.