IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v222y2018icp687-703.html
   My bibliography  Save this article

Thermodynamic characterisation of aqueous alkanolamine and amine solutions for acid gas processing by transferable molecular models

Author

Listed:
  • Pereira, Luís M.C.
  • Llovell, Fèlix
  • Vega, Lourdes F.

Abstract

The development of new alkanolamines/amines is a topic which has attracted a great deal research interest, particularly as absorbents for the removal of acid gases from industrial sources and CO2 capture applications. One of the major challenges when evaluating the techno-economic performance of selected new single amines or blends is the lack of experimental data on the thermophysical properties required for a reliable process design and simulation. In this contribution, a robust theoretical framework for the description of key thermophysical properties of aqueous solutions of single and mixed alkanolamines/amines at relevant gas separation process conditions is proposed. The approach is based on the coupling of the Free-Volume Theory and the Density Gradient Theory with a molecular-based equation of state (soft-SAFT) for the integrated modelling of phase behaviour, enthalpies, densities, viscosities and interfacial tensions. The alkanolamines and amines investigated differ in their family and structure, and included primary (monoethanolamine), secondary (diethanolamine), tertiary (methyldiethanolamine), sterically hindered (2-amino-2-methyl-1-propanol) and cyclic amines (piperazine). The study was performed in a systematic manner, starting from the development of the models for the pure amines, the description of their thermophysical properties, and the properties of the aqueous mixtures. Compared to other models described in literature, the present modelling approach preserves the effects due the chemical structure and key intermolecular interactions of the examined alkanolamines/amines through a set of molecular parameters obtained from pure substance data, whenever available, or transferred from substances of different chemical families. This enabled the development of a consistent modelling framework which can provide reliable thermodynamic property predictions of both single and blended amine solutions over a broad range of temperatures (298–373 K) and compositions (0–50 wt% amine). The proposed approach is well-suited for implementation and extension to other alkanolamines and amines, making it a valuable tool for having reliable process simulations as well as for the screening and discovery of new amine systems, which will be required for the deployment of more economical acid gas removal processes.

Suggested Citation

  • Pereira, Luís M.C. & Llovell, Fèlix & Vega, Lourdes F., 2018. "Thermodynamic characterisation of aqueous alkanolamine and amine solutions for acid gas processing by transferable molecular models," Applied Energy, Elsevier, vol. 222(C), pages 687-703.
  • Handle: RePEc:eee:appene:v:222:y:2018:i:c:p:687-703
    DOI: 10.1016/j.apenergy.2018.04.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918305543
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.04.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Hadri, Nabil & Quang, Dang Viet & Goetheer, Earl L.V. & Abu Zahra, Mohammad R.M., 2017. "Aqueous amine solution characterization for post-combustion CO2 capture process," Applied Energy, Elsevier, vol. 185(P2), pages 1433-1449.
    2. Wang, Meihong & Joel, Atuman S. & Ramshaw, Colin & Eimer, Dag & Musa, Nuhu M., 2015. "Process intensification for post-combustion CO2 capture with chemical absorption: A critical review," Applied Energy, Elsevier, vol. 158(C), pages 275-291.
    3. Diego, Maria Elena & Bellas, Jean-Michel & Pourkashanian, Mohamed, 2018. "Techno-economic analysis of a hybrid CO2 capture system for natural gas combined cycles with selective exhaust gas recirculation," Applied Energy, Elsevier, vol. 215(C), pages 778-791.
    4. Oh, Se-Young & Binns, Michael & Cho, Habin & Kim, Jin-Kuk, 2016. "Energy minimization of MEA-based CO2 capture process," Applied Energy, Elsevier, vol. 169(C), pages 353-362.
    5. Li, Kangkang & Leigh, Wardhaugh & Feron, Paul & Yu, Hai & Tade, Moses, 2016. "Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements," Applied Energy, Elsevier, vol. 165(C), pages 648-659.
    6. Vaccarelli, Maura & Sammak, Majed & Jonshagen, Klas & Carapellucci, Roberto & Genrup, Magnus, 2016. "Combined cycle power plants with post-combustion CO2 capture: Energy analysis at part load conditions for different HRSG configurations," Energy, Elsevier, vol. 112(C), pages 917-925.
    7. Goto, Kazuya & Yogo, Katsunori & Higashii, Takayuki, 2013. "A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture," Applied Energy, Elsevier, vol. 111(C), pages 710-720.
    8. Oh, Se-Young & Yun, Seokwon & Kim, Jin-Kuk, 2018. "Process integration and design for maximizing energy efficiency of a coal-fired power plant integrated with amine-based CO2 capture process," Applied Energy, Elsevier, vol. 216(C), pages 311-322.
    9. Zhao, Bin & Liu, Fangzheng & Cui, Zheng & Liu, Changjun & Yue, Hairong & Tang, Siyang & Liu, Yingying & Lu, Houfang & Liang, Bin, 2017. "Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant: Process improvement," Applied Energy, Elsevier, vol. 185(P1), pages 362-375.
    10. Li, Bao-Hong & Zhang, Nan & Smith, Robin, 2016. "Simulation and analysis of CO2 capture process with aqueous monoethanolamine solution," Applied Energy, Elsevier, vol. 161(C), pages 707-717.
    11. Zhang, Rui & Zhang, Xiaowen & Yang, Qi & Yu, Hai & Liang, Zhiwu & Luo, Xiao, 2017. "Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC)," Applied Energy, Elsevier, vol. 205(C), pages 1002-1011.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Haitao & Ezeh, Collins I. & Ren, Weijia & Li, Wentao & Pang, Cheng Heng & Zheng, Chenghang & Gao, Xiang & Wu, Tao, 2019. "Integration of machine learning approaches for accelerated discovery of transition-metal dichalcogenides as Hg0 sensing materials," Applied Energy, Elsevier, vol. 254(C).
    2. Pereira, Luís M.C. & Vega, Lourdes F., 2018. "A systematic approach for the thermodynamic modelling of CO2-amine absorption process using molecular-based models," Applied Energy, Elsevier, vol. 232(C), pages 273-291.
    3. Jovell, Daniel & Gonzalez-Olmos, Rafael & Llovell, Fèlix, 2022. "A computational drop-in assessment of hydrofluoroethers in Organic Rankine Cycles," Energy, Elsevier, vol. 254(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, Luís M.C. & Vega, Lourdes F., 2018. "A systematic approach for the thermodynamic modelling of CO2-amine absorption process using molecular-based models," Applied Energy, Elsevier, vol. 232(C), pages 273-291.
    2. Ji, Long & Yu, Hai & Li, Kangkang & Yu, Bing & Grigore, Mihaela & Yang, Qi & Wang, Xiaolong & Chen, Zuliang & Zeng, Ming & Zhao, Shuaifei, 2018. "Integrated absorption-mineralisation for low-energy CO2 capture and sequestration," Applied Energy, Elsevier, vol. 225(C), pages 356-366.
    3. Yun, Seokwon & Lee, Sunghoon & Jang, Mun-Gi & Kim, Jin-Kuk, 2021. "Techno-economic assessment of CO2 capture integrated coal-fired power plant with energetic analysis," Energy, Elsevier, vol. 236(C).
    4. Zhao, Bin & Liu, Fangzheng & Cui, Zheng & Liu, Changjun & Yue, Hairong & Tang, Siyang & Liu, Yingying & Lu, Houfang & Liang, Bin, 2017. "Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant: Process improvement," Applied Energy, Elsevier, vol. 185(P1), pages 362-375.
    5. Garlapalli, Ravinder K. & Spencer, Michael W. & Alam, Khairul & Trembly, Jason P., 2018. "Integration of heat recovery unit in coal fired power plants to reduce energy cost of carbon dioxide capture," Applied Energy, Elsevier, vol. 229(C), pages 900-909.
    6. Putta, Koteswara Rao & Tobiesen, Finn Andrew & Svendsen, Hallvard F. & Knuutila, Hanna K., 2017. "Applicability of enhancement factor models for CO2 absorption into aqueous MEA solutions," Applied Energy, Elsevier, vol. 206(C), pages 765-783.
    7. Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
    8. Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
    9. Wang, Dandan & Li, Sheng & Liu, Feng & Gao, Lin & Sui, Jun, 2018. "Post combustion CO2 capture in power plant using low temperature steam upgraded by double absorption heat transformer," Applied Energy, Elsevier, vol. 227(C), pages 603-612.
    10. Wang, Tao & Yu, Wei & Le Moullec, Yann & Liu, Fei & Xiong, Yili & He, Hui & Lu, Jiahui & Hsu, Emily & Fang, Mengxiang & Luo, Zhongyang, 2017. "Solvent regeneration by novel direct non-aqueous gas stripping process for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 205(C), pages 23-32.
    11. Ali Saleh Bairq, Zain & Gao, Hongxia & Huang, Yufei & Zhang, Haiyan & Liang, Zhiwu, 2019. "Enhancing CO2 desorption performance in rich MEA solution by addition of SO42−/ZrO2/SiO2 bifunctional catalyst," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Nwaoha, Chikezie & Tontiwachwuthikul, Paitoon, 2019. "Carbon dioxide capture from pulp mill using 2-amino-2-methyl-1-propanol and monoethanolamine blend: Techno-economic assessment of advanced process configuration," Applied Energy, Elsevier, vol. 250(C), pages 1202-1216.
    13. Yi, Qun & Zhao, Yingjie & Huang, Yi & Wei, Guoqiang & Hao, Yanhong & Feng, Jie & Mohamed, Usama & Pourkashanian, Mohamed & Nimmo, William & Li, Wenying, 2018. "Life cycle energy-economic-CO2 emissions evaluation of biomass/coal, with and without CO2 capture and storage, in a pulverized fuel combustion power plant in the United Kingdom," Applied Energy, Elsevier, vol. 225(C), pages 258-272.
    14. Qi, Guojie & Liu, Kun & House, Alan & Salmon, Sonja & Ambedkar, Balraj & Frimpong, Reynolds A. & Remias, Joseph E. & Liu, Kunlei, 2018. "Laboratory to bench-scale evaluation of an integrated CO2 capture system using a thermostable carbonic anhydrase promoted K2CO3 solvent with low temperature vacuum stripping," Applied Energy, Elsevier, vol. 209(C), pages 180-189.
    15. Guo, Liheng & Ding, Yudong & Liao, Qiang & Zhu, Xun & Wang, Hong, 2022. "A new heat supply strategy for CO2 capture process based on the heat recovery from turbine exhaust steam in a coal-fired power plant," Energy, Elsevier, vol. 239(PA).
    16. Zheng, Yawen & Gao, Lin & He, Song, 2023. "Analysis of the mechanism of energy consumption for CO2 capture in a power system," Energy, Elsevier, vol. 262(PA).
    17. Barzagli, Francesco & Giorgi, Claudia & Mani, Fabrizio & Peruzzini, Maurizio, 2018. "Reversible carbon dioxide capture by aqueous and non-aqueous amine-based absorbents: A comparative analysis carried out by 13C NMR spectroscopy," Applied Energy, Elsevier, vol. 220(C), pages 208-219.
    18. Zhang, Xiaowen & Huang, Yufei & Gao, Hongxia & Luo, Xiao & Liang, Zhiwu & Tontiwachwuthikul, Paitoon, 2019. "Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process," Applied Energy, Elsevier, vol. 240(C), pages 827-841.
    19. Xiao, Min & Zheng, Wenchao & Liu, Helei & Luo, Xiao & Gao, Hongxia & Liang, Zhiwu, 2021. "Thermodynamic analysis of carbamate formation and carbon dioxide absorption in N-methylaminoethanol solution," Applied Energy, Elsevier, vol. 281(C).
    20. Yun, Seokwon & Oh, Se-Young & Kim, Jin-Kuk, 2020. "Techno-economic assessment of absorption-based CO2 capture process based on novel solvent for coal-fired power plant," Applied Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:222:y:2018:i:c:p:687-703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.