IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v215y2018icp41-53.html
   My bibliography  Save this article

Improving the prediction performance of the finite element model for estimating the technical performance of the distributed generation of solar power system in a building façade

Author

Listed:
  • Koo, Choongwan
  • Hong, Taehoon
  • Oh, Jeongyoon
  • Choi, Jun-Ki

Abstract

As interest in the distributed generation of solar power system in a building façade continues to increase, its technical performance (i.e. the amount of electricity generation) should be carefully investigated before its implementation. In this regard, this study aimed to develop the nine-node-based finite element model for estimating the technical performance of the distributed generation of solar power system in a building façade (FEM9-node), focusing on the improvement of the prediction performance. The developed model (FEM9-node) was proven to be superior to the four-node-based model (FEM4-node), which was developed in the previous study, in terms of both prediction accuracy and standard deviation. In other words, the prediction accuracy (3.55%) and standard deviation (2.93%) of the developed model (FEM9-node) was determined to be superior to those of the previous model (FEM4-node) (i.e. 4.54% and 4.39%, respectively). The practical application was carried out to enable a decision maker (e.g. construction manager, facility manager) to understand how the developed model works in a clear way. It is expected that the developed model (FEM9-node) can be used in the early design phase in an easy way within a short time. In addition, it could be extended to any other countries in a global environment.

Suggested Citation

  • Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Choi, Jun-Ki, 2018. "Improving the prediction performance of the finite element model for estimating the technical performance of the distributed generation of solar power system in a building façade," Applied Energy, Elsevier, vol. 215(C), pages 41-53.
  • Handle: RePEc:eee:appene:v:215:y:2018:i:c:p:41-53
    DOI: 10.1016/j.apenergy.2018.01.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918300941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.01.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Gang & Rasul, M.G. & Amanullah, M.T.O. & Khan, M.M.K., 2012. "Techno-economic simulation and optimization of residential grid-connected PV system for the Queensland climate," Renewable Energy, Elsevier, vol. 45(C), pages 146-155.
    2. Masa-Bote, Daniel & Caamaño-Martín, Estefanía, 2014. "Methodology for estimating building integrated photovoltaics electricity production under shadowing conditions and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 492-500.
    3. Hong, Taehoon & Koo, Choongwan & Park, Joonho & Park, Hyo Seon, 2014. "A GIS (geographic information system)-based optimization model for estimating the electricity generation of the rooftop PV (photovoltaic) system," Energy, Elsevier, vol. 65(C), pages 190-199.
    4. Kacira, Murat & Simsek, Mehmet & Babur, Yunus & Demirkol, Sedat, 2004. "Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey," Renewable Energy, Elsevier, vol. 29(8), pages 1265-1275.
    5. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Koo, Choongwan & Lee, Minhyun & Ji, Changyoon & Jeong, Jaewook, 2016. "An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system," Energy, Elsevier, vol. 102(C), pages 416-426.
    6. Athienitis, Andreas K. & Barone, Giovanni & Buonomano, Annamaria & Palombo, Adolfo, 2018. "Assessing active and passive effects of façade building integrated photovoltaics/thermal systems: Dynamic modelling and simulation," Applied Energy, Elsevier, vol. 209(C), pages 355-382.
    7. Cucchiella, Federica & D'Adamo, Idiano, 2012. "Estimation of the energetic and environmental impacts of a roof-mounted building-integrated photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5245-5259.
    8. Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Ban, Cheolwoo & Oh, Jeongyoon, 2017. "Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses," Energy, Elsevier, vol. 124(C), pages 382-396.
    9. Kaldellis, John & Zafirakis, Dimitrios, 2012. "Experimental investigation of the optimum photovoltaic panels’ tilt angle during the summer period," Energy, Elsevier, vol. 38(1), pages 305-314.
    10. Ordóñez, J. & Jadraque, E. & Alegre, J. & Martínez, G., 2010. "Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2122-2130, September.
    11. Cannavale, Alessandro & Ierardi, Laura & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Improving energy and visual performance in offices using building integrated perovskite-based solar cells: A case study in Southern Italy," Applied Energy, Elsevier, vol. 205(C), pages 834-846.
    12. Celik, Berk & Karatepe, Engin & Silvestre, Santiago & Gokmen, Nuri & Chouder, Aissa, 2015. "Analysis of spatial fixed PV arrays configurations to maximize energy harvesting in BIPV applications," Renewable Energy, Elsevier, vol. 75(C), pages 534-540.
    13. Koo, Choongwan & Hong, Taehoon & Lee, Minhyun & Kim, Jimin, 2016. "An integrated multi-objective optimization model for determining the optimal solution in implementing the rooftop photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 822-837.
    14. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    15. Lukač, Niko & Žlaus, Danijel & Seme, Sebastijan & Žalik, Borut & Štumberger, Gorazd, 2013. "Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data," Applied Energy, Elsevier, vol. 102(C), pages 803-812.
    16. Park, Hyo Seon & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Jeong, Kwangbok, 2016. "A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 179(C), pages 211-227.
    17. Hong, Taehoon & Koo, Choongwan & Kim, Daeho & Lee, Minhyun & Kim, Jimin, 2015. "An estimation methodology for the dynamic operational rating of a new residential building using the advanced case-based reasoning and stochastic approaches," Applied Energy, Elsevier, vol. 150(C), pages 308-322.
    18. Jayathissa, P. & Luzzatto, M. & Schmidli, J. & Hofer, J. & Nagy, Z. & Schlueter, A., 2017. "Optimising building net energy demand with dynamic BIPV shading," Applied Energy, Elsevier, vol. 202(C), pages 726-735.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Yuan & Dong, Jianfei & Isabella, Olindo & Santbergen, Rudi & Tan, Hairen & Zeman, Miro & Zhang, Guoqi, 2018. "A photovoltaic window with sun-tracking shading elements towards maximum power generation and non-glare daylighting," Applied Energy, Elsevier, vol. 228(C), pages 1454-1472.
    2. Kapp, Sean & Choi, Jun-Ki & Hong, Taehoon, 2023. "Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    3. Albara M. Mustafa & Abbas Barabadi & Tore Markeset & Masoud Naseri, 2021. "An overall performance index for wind farms: a case study in Norway Arctic region," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 938-950, October.
    4. Oh, Jeongyoon & Koo, Choongwan & Hong, Taehoon & Cha, Seung Hyun, 2018. "An integrated model for estimating the techno-economic performance of the distributed solar generation system on building façades: Focused on energy demand and supply," Applied Energy, Elsevier, vol. 228(C), pages 1071-1090.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Hyo Seon & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Jeong, Kwangbok, 2016. "A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 179(C), pages 211-227.
    2. Hong, Taehoon & Koo, Choongwan & Oh, Jeongyoon & Jeong, Kwangbok, 2017. "Nonlinearity analysis of the shading effect on the technical–economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 194(C), pages 467-480.
    3. Oh, Jeongyoon & Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Lee, Minhyun, 2017. "An economic impact analysis of residential progressive electricity tariffs in implementing the building-integrated photovoltaic blind using an advanced finite element model," Applied Energy, Elsevier, vol. 202(C), pages 259-274.
    4. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    5. Oh, Jeongyoon & Koo, Choongwan & Hong, Taehoon & Cha, Seung Hyun, 2018. "An integrated model for estimating the techno-economic performance of the distributed solar generation system on building façades: Focused on energy demand and supply," Applied Energy, Elsevier, vol. 228(C), pages 1071-1090.
    6. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    7. Lee, Minhyun & Hong, Taehoon & Jeong, Jaewook & Jeong, Kwangbok, 2018. "Development of a rooftop solar photovoltaic rating system considering the technical and economic suitability criteria at the building level," Energy, Elsevier, vol. 160(C), pages 213-224.
    8. Ramshani, Mohammad & Khojandi, Anahita & Li, Xueping & Omitaomu, Olufemi, 2020. "Optimal planning of the joint placement of photovoltaic panels and green roofs under climate change uncertainty," Omega, Elsevier, vol. 90(C).
    9. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    10. Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Ban, Cheolwoo & Oh, Jeongyoon, 2017. "Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses," Energy, Elsevier, vol. 124(C), pages 382-396.
    11. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    12. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Lee, Minhyun & Hong, Taehoon & Yoo, Hyunji & Koo, Choongwan & Kim, Jimin & Jeong, Kwangbok & Jeong, Jaewook & Ji, Changyoon, 2017. "Establishment of a base price for the Solar Renewable Energy Credit (SREC) from the perspective of residents and state governments in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1066-1080.
    14. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    15. Ruhang, Xu, 2016. "The restriction research for urban area building integrated grid-connected PV power generation potential," Energy, Elsevier, vol. 113(C), pages 124-143.
    16. Hong, Taehoon & Koo, Choongwan & Park, Joonho & Park, Hyo Seon, 2014. "A GIS (geographic information system)-based optimization model for estimating the electricity generation of the rooftop PV (photovoltaic) system," Energy, Elsevier, vol. 65(C), pages 190-199.
    17. Lau, K.Y. & Tan, C.W. & Yatim, A.H.M., 2018. "Effects of ambient temperatures, tilt angles, and orientations on hybrid photovoltaic/diesel systems under equatorial climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2625-2636.
    18. Diane Palmer & Elena Koumpli & Ian Cole & Ralph Gottschalg & Thomas Betts, 2018. "A GIS-Based Method for Identification of Wide Area Rooftop Suitability for Minimum Size PV Systems Using LiDAR Data and Photogrammetry," Energies, MDPI, vol. 11(12), pages 1-22, December.
    19. Elham Fakhraian & Marc Alier & Francesc Valls Dalmau & Alireza Nameni & Maria José Casañ Guerrero, 2021. "The Urban Rooftop Photovoltaic Potential Determination," Sustainability, MDPI, vol. 13(13), pages 1-18, July.
    20. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:215:y:2018:i:c:p:41-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.