IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v211y2018icp764-773.html
   My bibliography  Save this article

On maximizing profit of wind-battery supported power station based on wind power and energy price forecasting

Author

Listed:
  • Khalid, Muhammad
  • Aguilera, Ricardo P.
  • Savkin, Andrey V.
  • Agelidis, Vassilios G.

Abstract

This paper proposes a framework to develop an optimal power dispatch strategy for grid-connected wind power plants containing a Battery Energy Storage System (BESS). Considering the intermittent nature of wind power and rapidly varying electricity market price, short-term forecasting of these variables is used for efficient energy management. The predicted variability trends in market price assist in earning additional income which subsequently increase the operational profit. Then on the basis of income improvement, optimal capacity of the BESS can be determined. The proposed framework utilizes Dynamic Programming tool which can incorporate the predictions of both wind power and market price simultaneously as inputs in a receding horizon approach. The proposed strategy is validated using real electricity market price and wind power data in different scenarios of BESS power and capacity. The obtained results depict the effectiveness of the strategy to help power system operators in ensuring economically optimal energy dispatch. Moreover, the results can aid power system planners in the selection of optimal BESS capacity for given power ratings in order to maximize their operational profits.

Suggested Citation

  • Khalid, Muhammad & Aguilera, Ricardo P. & Savkin, Andrey V. & Agelidis, Vassilios G., 2018. "On maximizing profit of wind-battery supported power station based on wind power and energy price forecasting," Applied Energy, Elsevier, vol. 211(C), pages 764-773.
  • Handle: RePEc:eee:appene:v:211:y:2018:i:c:p:764-773
    DOI: 10.1016/j.apenergy.2017.11.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917316598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.11.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yip, Chak Man Andrew & Gunturu, Udaya Bhaskar & Stenchikov, Georgiy L., 2016. "Wind resource characterization in the Arabian Peninsula," Applied Energy, Elsevier, vol. 164(C), pages 826-836.
    2. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    3. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    4. Perera, A.T.D. & Nik, Vahid M. & Mauree, Dasaraden & Scartezzini, Jean-Louis, 2017. "Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid," Applied Energy, Elsevier, vol. 190(C), pages 232-248.
    5. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    6. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    7. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    8. Khalid, M. & Savkin, A.V., 2014. "Minimization and control of battery energy storage for wind power smoothing: Aggregated, distributed and semi-distributed storage," Renewable Energy, Elsevier, vol. 64(C), pages 105-112.
    9. Hannele Holttinen, 2012. "Wind integration: experience, issues, and challenges," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(3), pages 243-255, November.
    10. Fossati, Juan P. & Galarza, Ainhoa & Martín-Villate, Ander & Fontán, Luis, 2015. "A method for optimal sizing energy storage systems for microgrids," Renewable Energy, Elsevier, vol. 77(C), pages 539-549.
    11. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    12. Lantz, Eric & Mai, Trieu & Wiser, Ryan H. & Krishnan, Venkat, 2016. "Long-term implications of sustained wind power growth in the United States: Direct electric system impacts and costs," Applied Energy, Elsevier, vol. 179(C), pages 832-846.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miseta, Tamás & Fodor, Attila & Vathy-Fogarassy, Ágnes, 2022. "Energy trading strategy for storage-based renewable power plants," Energy, Elsevier, vol. 250(C).
    2. Ouédraogo, S. & Faggianelli, G.A. & Notton, G. & Duchaud, J.L. & Voyant, C., 2022. "Impact of electricity tariffs and energy management strategies on PV/Battery microgrid performances," Renewable Energy, Elsevier, vol. 199(C), pages 816-825.
    3. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    4. Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.
    5. Abbasi, Mohammad Hossein & Taki, Mehrdad & Rajabi, Amin & Li, Li & Zhang, Jiangfeng, 2019. "Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: A multi-stage risk constrained approach," Applied Energy, Elsevier, vol. 239(C), pages 1294-1307.
    6. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    7. Ramin Sakipour & Hamdi Abdi, 2020. "Optimizing Battery Energy Storage System Data in the Presence of Wind Power Plants: A Comparative Study on Evolutionary Algorithms," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    8. Li, Yang & Vilathgamuwa, Mahinda & Choi, San Shing & Xiong, Binyu & Tang, Jinrui & Su, Yixin & Wang, Yu, 2020. "Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability," Applied Energy, Elsevier, vol. 260(C).
    9. Wenhao Zhuo & Andrey V. Savkin, 2019. "Profit Maximizing Control of a Microgrid with Renewable Generation and BESS Based on a Battery Cycle Life Model and Energy Price Forecasting," Energies, MDPI, vol. 12(15), pages 1-17, July.
    10. Loukatou, Angeliki & Johnson, Paul & Howell, Sydney & Duck, Peter, 2021. "Optimal valuation of wind energy projects co-located with battery storage," Applied Energy, Elsevier, vol. 283(C).
    11. Fan, Feilong & Huang, Wentao & Tai, Nengling & Zheng, Xiaodong & Hu, Yan & Ma, Zhoujun, 2018. "A conditional depreciation balancing strategy for the equitable operation of extended hybrid energy storage systems," Applied Energy, Elsevier, vol. 228(C), pages 1937-1952.
    12. Ahmed, Adil & Khalid, Muhammad, 2018. "An intelligent framework for short-term multi-step wind speed forecasting based on Functional Networks," Applied Energy, Elsevier, vol. 225(C), pages 902-911.
    13. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
    14. Faraci, Giuseppe & Raciti, Angelo & Rizzo, Santi Agatino & Schembra, Giovanni, 2020. "Green wireless power transfer system for a drone fleet managed by reinforcement learning in smart industry," Applied Energy, Elsevier, vol. 259(C).
    15. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    16. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Optimal operation value of combined wind power and energy storage in multi-stage electricity markets," Applied Energy, Elsevier, vol. 235(C), pages 1153-1168.
    17. Xu, Xiao & Hu, Weihao & Cao, Di & Huang, Qi & Liu, Zhou & Liu, Wen & Chen, Zhe & Blaabjerg, Frede, 2020. "Scheduling of wind-battery hybrid system in the electricity market using distributionally robust optimization," Renewable Energy, Elsevier, vol. 156(C), pages 47-56.
    18. Miao Miao & Suhua Lou & Yuanxin Zhang & Xing Chen, 2021. "Research on the Optimized Operation of Hybrid Wind and Battery Energy Storage System Based on Peak-Valley Electricity Price," Energies, MDPI, vol. 14(12), pages 1-11, June.
    19. Wenhao Zhuo & Andrey V. Savkin & Ke Meng, 2019. "Decentralized Optimal Control of a Microgrid with Solar PV, BESS and Thermostatically Controlled Loads," Energies, MDPI, vol. 12(11), pages 1-15, June.
    20. Song, Ziyou & Feng, Shuo & Zhang, Lei & Hu, Zunyan & Hu, Xiaosong & Yao, Rui, 2019. "Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    21. Li, Yang & Vilathgamuwa, Mahinda & Choi, San Shing & Farrell, Troy W. & Tran, Ngoc Tham & Teague, Joseph, 2019. "Development of a degradation-conscious physics-based lithium-ion battery model for use in power system planning studies," Applied Energy, Elsevier, vol. 248(C), pages 512-525.
    22. Facci, Andrea L. & Ubertini, Stefano, 2018. "Analysis of a fuel cell combined heat and power plant under realistic smart management scenarios," Applied Energy, Elsevier, vol. 216(C), pages 60-72.
    23. Abdul Rauf & Mahmoud Kassas & Muhammad Khalid, 2022. "Data-Driven Optimal Battery Storage Sizing for Grid-Connected Hybrid Distributed Generations Considering Solar and Wind Uncertainty," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    24. Khaloie, Hooman & Abdollahi, Amir & Shafie-khah, Miadreza & Anvari-Moghaddam, Amjad & Nojavan, Sayyad & Siano, Pierluigi & Catalão, João P.S., 2020. "Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model," Applied Energy, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Qiheng & Zhou, Keliang & Yao, Jing, 2020. "A new measure of wind power variability with implications for the optimal sizing of standalone wind power systems," Renewable Energy, Elsevier, vol. 150(C), pages 538-549.
    2. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    3. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Xie, Chunping & Hong, Yan & Ding, Yulong & Li, Yongliang & Radcliffe, Jonathan, 2018. "An economic feasibility assessment of decoupled energy storage in the UK: With liquid air energy storage as a case study," Applied Energy, Elsevier, vol. 225(C), pages 244-257.
    5. Gaurav Chaudhary & Jacob J. Lamb & Odne S. Burheim & Bjørn Austbø, 2021. "Review of Energy Storage and Energy Management System Control Strategies in Microgrids," Energies, MDPI, vol. 14(16), pages 1-26, August.
    6. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    7. Qin, Chao & Saunders, Gordon & Loth, Eric, 2017. "Offshore wind energy storage concept for cost-of-rated-power savings," Applied Energy, Elsevier, vol. 201(C), pages 148-157.
    8. Vorushylo, Inna & Keatley, Patrick & Shah, Nikhilkumar & Green, Richard & Hewitt, Neil, 2018. "How heat pumps and thermal energy storage can be used to manage wind power: A study of Ireland," Energy, Elsevier, vol. 157(C), pages 539-549.
    9. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    10. Okazaki, Toru, 2020. "Electric thermal energy storage and advantage of rotating heater having synchronous inertia," Renewable Energy, Elsevier, vol. 151(C), pages 563-574.
    11. Tiejiang Yuan & Qingxi Duan & Xiangping Chen & Xufeng Yuan & Wenping Cao & Juan Hu & Quanmin Zhu, 2017. "Coordinated Control of a Wind-Methanol-Fuel Cell System with Hydrogen Storage," Energies, MDPI, vol. 10(12), pages 1-21, December.
    12. Shaohua Hu & Xinlong Zhou & Yi Luo & Guang Zhang, 2019. "Numerical Simulation Three-Dimensional Nonlinear Seepage in a Pumped-Storage Power Station: Case Study," Energies, MDPI, vol. 12(1), pages 1-15, January.
    13. Auth, Trevor L. & Wackerman, Grace E. & Garcia, Marcelo H. & Stillwell, Ashlynn S., 2021. "Low-head hydropower as a reserve power source: A case study of Northeastern Illinois," Renewable Energy, Elsevier, vol. 175(C), pages 980-989.
    14. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    15. Li, Yang & Vilathgamuwa, Mahinda & Choi, San Shing & Farrell, Troy W. & Tran, Ngoc Tham & Teague, Joseph, 2019. "Development of a degradation-conscious physics-based lithium-ion battery model for use in power system planning studies," Applied Energy, Elsevier, vol. 248(C), pages 512-525.
    16. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    17. Tingli Cheng & Minyou Chen & Yingxiang Wang & Bo Li & Muhammad Arshad Shehzad Hassan & Tao Chen & Ruilin Xu, 2018. "Adaptive Robust Method for Dynamic Economic Emission Dispatch Incorporating Renewable Energy and Energy Storage," Complexity, Hindawi, vol. 2018, pages 1-13, June.
    18. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
    19. Huang, Y. & Wang, Y.D. & Chen, Haisheng & Zhang, Xinjing & Mondol, J. & Shah, N. & Hewitt, N.J., 2017. "Performance analysis of biofuel fired trigeneration systems with energy storage for remote households," Applied Energy, Elsevier, vol. 186(P3), pages 530-538.
    20. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:211:y:2018:i:c:p:764-773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.