IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp1139-1149.html
   My bibliography  Save this article

Biorefinery process for hydrothermal liquefaction of microalgae powered by a concentrating solar plant: A conceptual study

Author

Listed:
  • Giaconia, Alberto
  • Caputo, Giampaolo
  • Ienna, Antonio
  • Mazzei, Domenico
  • Schiavo, Benedetto
  • Scialdone, Onofrio
  • Galia, Alessandro

Abstract

A conceptual analysis of coupling a concentrating solar power plant with a biorefinery process consisting in the hydrothermal liquefaction (HTL) of microalgae to biocrude was performed. The configuration of the CSP-HTL plant was designed to allow continuous operation considering 10kT of microalgae processed each year using, for the first time, a ternary nitrate mixture as heat transfer fluid and storage medium in the temperature range of 340–410°C.

Suggested Citation

  • Giaconia, Alberto & Caputo, Giampaolo & Ienna, Antonio & Mazzei, Domenico & Schiavo, Benedetto & Scialdone, Onofrio & Galia, Alessandro, 2017. "Biorefinery process for hydrothermal liquefaction of microalgae powered by a concentrating solar plant: A conceptual study," Applied Energy, Elsevier, vol. 208(C), pages 1139-1149.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:1139-1149
    DOI: 10.1016/j.apenergy.2017.09.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917313211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Yang & Yeh, Thomas & Song, Wenhan & Xu, Donghai & Wang, Shuzhong, 2015. "A review of bio-oil production from hydrothermal liquefaction of algae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 776-790.
    2. Agrafiotis, Christos & von Storch, Henrik & Roeb, Martin & Sattler, Christian, 2014. "Solar thermal reforming of methane feedstocks for hydrogen and syngas production—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 656-682.
    3. Marcilla, A. & Catalá, L. & García-Quesada, J.C. & Valdés, F.J. & Hernández, M.R., 2013. "A review of thermochemical conversion of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 11-19.
    4. Dimitriadis, Athanasios & Bezergianni, Stella, 2017. "Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 113-125.
    5. Manenti, Flavio & Leon-Garzon, Andres R. & Ravaghi-Ardebili, Zohreh & Pirola, Carlo, 2014. "Assessing thermal energy storage technologies of concentrating solar plants for the direct coupling with chemical processes. The case of solar-driven biomass gasification," Energy, Elsevier, vol. 75(C), pages 45-52.
    6. Pearce, Matthew & Shemfe, Mobolaji & Sansom, Christopher, 2016. "Techno-economic analysis of solar integrated hydrothermal liquefaction of microalgae," Applied Energy, Elsevier, vol. 166(C), pages 19-26.
    7. Hognon, Céline & Delrue, Florian & Boissonnet, Guillaume, 2015. "Energetic and economic evaluation of Chlamydomonas reinhardtii hydrothermal liquefaction and pyrolysis through thermochemical models," Energy, Elsevier, vol. 93(P1), pages 31-40.
    8. Kumar, Kanhaiya & Ghosh, Supratim & Angelidaki, Irini & Holdt, Susan L. & Karakashev, Dimitar B. & Morales, Merlin Alvarado & Das, Debabrata, 2016. "Recent developments on biofuels production from microalgae and macroalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 235-249.
    9. Yoo, Gursong & Park, Min S. & Yang, Ji-Won & Choi, Minkee, 2015. "Lipid content in microalgae determines the quality of biocrude and Energy Return On Investment of hydrothermal liquefaction," Applied Energy, Elsevier, vol. 156(C), pages 354-361.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    2. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    3. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    4. Bi, Zheting & Zhang, Ji & Zhu, Zeying & Liang, Yanna & Wiltowski, Tomasz, 2018. "Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction," Applied Energy, Elsevier, vol. 209(C), pages 435-444.
    5. Gu, Xiangyu & Yu, Liang & Pang, Na & Martinez-Fernandez, Jose Salomon & Fu, Xiao & Chen, Shulin, 2020. "Comparative techno-economic analysis of algal biofuel production via hydrothermal liquefaction: One stage versus two stages," Applied Energy, Elsevier, vol. 259(C).
    6. Galadima, Ahmad & Muraza, Oki, 2018. "Hydrothermal liquefaction of algae and bio-oil upgrading into liquid fuels: Role of heterogeneous catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1037-1048.
    7. Azizi, Kolsoom & Keshavarz Moraveji, Mostafa & Abedini Najafabadi, Hamed, 2018. "A review on bio-fuel production from microalgal biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3046-3059.
    8. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    9. Chen, Haitao & He, Zhixia & Zhang, Bo & Feng, Huan & Kandasamy, Sabariswaran & Wang, Bin, 2019. "Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis, α-cellulose, and lignin," Energy, Elsevier, vol. 179(C), pages 1103-1113.
    10. Zhang, Bo & Chen, Jixiang & Kandasamy, Sabariswaran & He, Zhixia, 2020. "Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending -operation parameter and biocrude chemistry investigation," Energy, Elsevier, vol. 193(C).
    11. Couto, Eduardo Aguiar & Pinto, Filomena & Varela, Francisco & Reis, Alberto & Costa, Paula & Calijuri, Maria Lúcia, 2018. "Hydrothermal liquefaction of biomass produced from domestic sewage treatment in high-rate ponds," Renewable Energy, Elsevier, vol. 118(C), pages 644-653.
    12. Pearce, Matthew & Shemfe, Mobolaji & Sansom, Christopher, 2016. "Techno-economic analysis of solar integrated hydrothermal liquefaction of microalgae," Applied Energy, Elsevier, vol. 166(C), pages 19-26.
    13. Gu, X. & Martinez-Fernandez, J.S. & Pang, N. & Fu, X. & Chen, S., 2020. "Recent development of hydrothermal liquefaction for algal biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    14. Azizi, Kolsoom & Moshfegh Haghighi, Ali & Keshavarz Moraveji, Mostafa & Olazar, Martin & Lopez, Gartzen, 2019. "Co-pyrolysis of binary and ternary mixtures of microalgae, wood and waste tires through TGA," Renewable Energy, Elsevier, vol. 142(C), pages 264-271.
    15. Saber, Mohammad & Nakhshiniev, Bakhtiyor & Yoshikawa, Kunio, 2016. "A review of production and upgrading of algal bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 918-930.
    16. Duan, Yibing & He, Zhixia & Zhang, Bo & Wang, Bin & Zhang, Feiyang, 2022. "Synergistic effect of hydrothermal co-liquefaction of Camellia oleifera Abel and Spirulina platensis: Parameters optimization and product characteristics," Renewable Energy, Elsevier, vol. 186(C), pages 26-34.
    17. Gong, Zhiqiang & Fang, Peiwen & Wang, Zhenbo & Li, Qiang & Li, Xiaoyu & Meng, Fanzhi & Zhang, Haoteng & Liu, Lei, 2020. "Catalytic pyrolysis of chemical extraction residue from microalgae biomass," Renewable Energy, Elsevier, vol. 148(C), pages 712-719.
    18. Saumya Verma & Raja Chowdhury & Sarat K. Das & Matthew J. Franchetti & Gang Liu, 2021. "Sunlight Intensity, Photosynthetically Active Radiation Modelling and Its Application in Algae-Based Wastewater Treatment and Its Cost Estimation," Sustainability, MDPI, vol. 13(21), pages 1-28, October.
    19. Hu, Yulin & Gong, Mengyue & Feng, Shanghuan & Xu, Chunbao (Charles) & Bassi, Amarjeet, 2019. "A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 476-492.
    20. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:1139-1149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.