IDEAS home Printed from
   My bibliography  Save this article

How to assess and manage energy performance of numerous telecommunication base stations: Evidence in China


  • Yang, Tian-Jian
  • Zhang, Yue-Jun
  • Tang, Su
  • Zhang, Jing


Existing calculated benchmarking methods and main energy performance assessment schemes often lack the practical ability to manage the energy performance of a vast number of widespread telecommunication base stations (TBSs). Therefore, on the basis of a TBS survey, this paper puts forward the dynamic simulation and sensitivity analysis method to allow the new rule “one energy benchmark for a group of similar TBSs” rather than the traditional rule “one benchmark for one assessed building”. The new method reasonably limits the number of benchmarks and a feasible benchmark system is established for managing numerous TBSs. The results indicate that, first, more than one million TBSs distributed in a large area of China can be divided into 448 typical scenarios. Second, the benchmarks for reasonable energy use of these scenarios can be organized into four simple benchmarking charts. Third, the attempt to establish further challenging energy benchmarks shows that the most energy-saving measure in TBSs, i.e., ventilation cooling, can fully eliminate the negative impact of poor configurations of envelops and cooling coefficients of performance (COP). Finally, establishing telecom industrial standards for locating the reasonable TBS energy consumption level even in giant countries appears feasible.

Suggested Citation

  • Yang, Tian-Jian & Zhang, Yue-Jun & Tang, Su & Zhang, Jing, 2016. "How to assess and manage energy performance of numerous telecommunication base stations: Evidence in China," Applied Energy, Elsevier, vol. 164(C), pages 436-445.
  • Handle: RePEc:eee:appene:v:164:y:2016:i:c:p:436-445
    DOI: 10.1016/j.apenergy.2015.11.069

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Al-Mulali, Usama & Ozturk, Ilhan, 2014. "Are energy conservation policies effective without harming economic growth in the Gulf Cooperation Council countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 639-650.
    2. Akbari, H., 1995. "Validation of an algorithm to disaggregate whole-building hourly electrical load into end uses," Energy, Elsevier, vol. 20(12), pages 1291-1301.
    3. Ortiz, Oscar & Castells, Francesc & Sonnemann, Guido, 2010. "Operational energy in the life cycle of residential dwellings: The experience of Spain and Colombia," Applied Energy, Elsevier, vol. 87(2), pages 673-680, February.
    4. Yang, Tian-Jian & Zhang, Yue-Jun & Huang, Jin & Peng, Ruo-Hong, 2013. "Estimating the energy saving potential of telecom operators in China," Energy Policy, Elsevier, vol. 61(C), pages 448-459.
    5. Olofsson, Thomas & Mahlia, T.M.I., 2012. "Modeling and simulation of the energy use in an occupied residential building in cold climate," Applied Energy, Elsevier, vol. 91(1), pages 432-438.
    6. Chung, William & Hui, Y.V. & Lam, Y. Miu, 2006. "Benchmarking the energy efficiency of commercial buildings," Applied Energy, Elsevier, vol. 83(1), pages 1-14, January.
    7. Sorrentino, Marco & Rizzo, Gianfranco & Genova, Fernando & Gaspardone, Marco, 2010. "A model for simulation and optimal energy management of Telecom switching plants," Applied Energy, Elsevier, vol. 87(1), pages 259-267, January.
    8. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liu, Yingjun & Liao, Shuguang, 2014. "A study on the use of phase change materials (PCMs) in combination with a natural cold source for space cooling in telecommunications base stations (TBSs) in China," Applied Energy, Elsevier, vol. 117(C), pages 95-103.
    9. Attia, Shady & Evrard, Arnaud & Gratia, Elisabeth, 2012. "Development of benchmark models for the Egyptian residential buildings sector," Applied Energy, Elsevier, vol. 94(C), pages 270-284.
    10. Sharma, Tarun & Balachandra, P., 2015. "Benchmarking sustainability of Indian electricity system: An indicator approach," Applied Energy, Elsevier, vol. 142(C), pages 206-220.
    11. Menezes, Anna Carolina & Cripps, Andrew & Bouchlaghem, Dino & Buswell, Richard, 2012. "Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap," Applied Energy, Elsevier, vol. 97(C), pages 355-364.
    12. Garimella, Suresh V. & Persoons, Tim & Weibel, Justin & Yeh, Lian-Tuu, 2013. "Technological drivers in data centers and telecom systems: Multiscale thermal, electrical, and energy management," Applied Energy, Elsevier, vol. 107(C), pages 66-80.
    13. Wang, Q.W. & Zhou, P. & Shen, N. & Wang, S.S., 2013. "Measuring carbon dioxide emission performance in Chinese provinces: A parametric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 324-330.
    14. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    15. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    16. Chung, William, 2011. "Review of building energy-use performance benchmarking methodologies," Applied Energy, Elsevier, vol. 88(5), pages 1470-1479, May.
    17. Wang, S.S. & Zhou, D.Q. & Zhou, P. & Wang, Q.W., 2011. "CO2 emissions, energy consumption and economic growth in China: A panel data analysis," Energy Policy, Elsevier, vol. 39(9), pages 4870-4875, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Zhang, L.Y. & Liu, Y.Y. & Guo, X. & Meng, X.Z. & Jin, L.W. & Zhang, Q.L. & Hu, W.J., 2017. "Experimental investigation and economic analysis of gravity heat pipe exchanger applied in communication base station," Applied Energy, Elsevier, vol. 194(C), pages 499-507.
    2. Sorrentino, Marco & Bruno, Marco & Trifirò, Alena & Rizzo, Gianfranco, 2019. "An innovative energy efficiency metric for data analytics and diagnostics in telecommunication applications," Applied Energy, Elsevier, vol. 242(C), pages 1539-1548.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Ham, Sang-Woo & Kim, Min-Hwi & Choi, Byung-Nam & Jeong, Jae-Weon, 2015. "Energy saving potential of various air-side economizers in a modular data center," Applied Energy, Elsevier, vol. 138(C), pages 258-275.
    3. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    4. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liao, Shuguang, 2015. "Performance of a free-air cooling system for telecommunications base stations using phase change materials (PCMs): In-situ tests," Applied Energy, Elsevier, vol. 147(C), pages 325-334.
    5. Szalay, Zsuzsa & Zöld, András, 2014. "Definition of nearly zero-energy building requirements based on a large building sample," Energy Policy, Elsevier, vol. 74(C), pages 510-521.
    6. Li, Xinyi & Yao, Runming & Li, Qin & Ding, Yong & Li, Baizhan, 2018. "An object-oriented energy benchmark for the evaluation of the office building stock," Utilities Policy, Elsevier, vol. 51(C), pages 1-11.
    7. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
    8. Filogamo, Luana & Peri, Giorgia & Rizzo, Gianfranco & Giaccone, Antonino, 2014. "On the classification of large residential buildings stocks by sample typologies for energy planning purposes," Applied Energy, Elsevier, vol. 135(C), pages 825-835.
    9. Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2014. "A novel dynamic modeling approach for predicting building energy performance," Applied Energy, Elsevier, vol. 114(C), pages 91-103.
    10. Wang, H. & Zhou, D.Q. & Zhou, P. & Zha, D.L., 2012. "Direct rebound effect for passenger transport: Empirical evidence from Hong Kong," Applied Energy, Elsevier, vol. 92(C), pages 162-167.
    11. Roth, Jonathan & Lim, Benjamin & Jain, Rishee K. & Grueneich, Dian, 2020. "Examining the feasibility of using open data to benchmark building energy usage in cities: A data science and policy perspective," Energy Policy, Elsevier, vol. 139(C).
    12. Juaidi, Adel & AlFaris, Fadi & Montoya, Francisco G. & Manzano-Agugliaro, Francisco, 2016. "Energy benchmarking for shopping centers in Gulf Coast region," Energy Policy, Elsevier, vol. 91(C), pages 247-255.
    13. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    14. Zhang, Xinxin & Kobayashi, Noriyuki & He, Maogang & Wang, Jingfu, 2016. "An organic group contribution approach to radiative efficiency estimation of organic working fluid," Applied Energy, Elsevier, vol. 162(C), pages 1205-1210.
    15. Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
    16. Lin, Boqiang & Du, Kerui, 2015. "Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach," Energy Economics, Elsevier, vol. 49(C), pages 550-557.
    17. Lin, Boqiang & Du, Kerui, 2015. "Energy and CO2 emissions performance in China's regional economies: Do market-oriented reforms matter?," Energy Policy, Elsevier, vol. 78(C), pages 113-124.
    18. Benedetti, Miriam & Bonfa', Francesca & Bertini, Ilaria & Introna, Vito & Ubertini, Stefano, 2018. "Explorative study on Compressed Air Systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 227(C), pages 436-448.
    19. Attia, Shady & Shadmanfar, Niloufar & Ricci, Federico, 2020. "Developing two benchmark models for nearly zero energy schools," Applied Energy, Elsevier, vol. 263(C).
    20. Wang, Ning & Wen, Zongguo & Liu, Mingqi & Guo, Jie, 2016. "Constructing an energy efficiency benchmarking system for coal production," Applied Energy, Elsevier, vol. 169(C), pages 301-308.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:164:y:2016:i:c:p:436-445. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.