IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v159y2015icp276-284.html
   My bibliography  Save this article

Performance analysis of the micro gas turbine Turbec T100 with a new FLOX-combustion system for low calorific fuels

Author

Listed:
  • Zornek, T.
  • Monz, T.
  • Aigner, M.

Abstract

This paper presents the first combustion system, which has been designed for the use of biomass derived product gases in micro gas turbines. The operating performance of the combustion system and of the micro gas turbine Turbec T100 was analyzed experimentally with synthetically mixed fuel compositions. Reliable start-up procedures and steady-state operation were observed. The Turbec T100 reached an electrical power output of 50 to 100kWel with a lower heating value of 5.0MJ/kg. Compared to natural gas, the electrical power output was noticeably higher at constant turbine speeds. Therefore, operation was limited by the power electronic at low speeds, while a second limitation was compressor surging at high speeds. To avoid surging, the turbine outlet temperature had to be reduced at turbine speeds between 64,400rpm and its maximum of 70,000rpm. The pressure losses across the FLOX-combustion chamber remained below 4%, which corresponds to a reduction of 30% compared to the Turbec combustion chamber fired with natural gas. Low pollutant emissions, i.e. CO<30ppm, NOx<6ppm and unburnt hydrocarbons <1ppm, were obtained over the whole operating range. Further optimization potential of the Turbec T100 was analyzed numerically. Neglecting compressor surging and the limitations of the power electronic, the numerical simulations predicted a maximum power output of 137kWel. The ability of the micro gas turbine to run with low calorific fuels is demonstrated and optimization potential is specified.

Suggested Citation

  • Zornek, T. & Monz, T. & Aigner, M., 2015. "Performance analysis of the micro gas turbine Turbec T100 with a new FLOX-combustion system for low calorific fuels," Applied Energy, Elsevier, vol. 159(C), pages 276-284.
  • Handle: RePEc:eee:appene:v:159:y:2015:i:c:p:276-284
    DOI: 10.1016/j.apenergy.2015.08.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915010119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.08.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Renzi, M. & Caresana, F. & Pelagalli, L. & Comodi, G., 2014. "Enhancing micro gas turbine performance through fogging technique: Experimental analysis," Applied Energy, Elsevier, vol. 135(C), pages 165-173.
    2. Arghode, Vaibhav K. & Gupta, Ashwani K., 2010. "Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion," Applied Energy, Elsevier, vol. 87(5), pages 1631-1640, May.
    3. Gupta, K.K. & Rehman, A. & Sarviya, R.M., 2010. "Bio-fuels for the gas turbine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2946-2955, December.
    4. Nikpey, H. & Assadi, M. & Breuhaus, P. & Mørkved, P.T., 2014. "Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas," Applied Energy, Elsevier, vol. 117(C), pages 30-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Baqir Hashmi & Mohammad Mansouri & Amare Desalegn Fentaye & Shazaib Ahsan & Konstantinos Kyprianidis, 2024. "An Artificial Neural Network-Based Fault Diagnostics Approach for Hydrogen-Fueled Micro Gas Turbines," Energies, MDPI, vol. 17(3), pages 1-23, February.
    2. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    3. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    4. Xu, Shunta & Xi, Liyang & Tian, Songjie & Tu, Yaojie & Chen, Sheng & Zhang, Shihong & Liu, Hao, 2023. "Numerical investigation of pressure and H2O dilution effects on NO formation and reduction pathways in pure hydrogen MILD combustion," Applied Energy, Elsevier, vol. 350(C).
    5. Pramanik, Santanu & Ravikrishna, R.V., 2022. "Non premixed operation strategies for a low emission syngas fuelled reverse flow combustor," Energy, Elsevier, vol. 254(PB).
    6. Karyeyen, Serhat & Feser, Joseph S. & Gupta, Ashwani K., 2019. "Swirl assisted distributed combustion behavior using hydrogen-rich gaseous fuels," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Szewczyk, Dariusz & Ślefarski, Rafał & Jankowski, Radosław, 2017. "Analysis of the combustion process of syngas fuels containing high hydrocarbons and nitrogen compounds in Zonal Volumetric Combustion technology," Energy, Elsevier, vol. 121(C), pages 716-725.
    8. Felix Grimm & Timo Lingstädt & Peter Kutne & Manfred Aigner, 2021. "Numerical and Experimental Study of a Jet-and-Recirculation Stabilized Low Calorific Combustor for a Hybrid Power Plant," Energies, MDPI, vol. 14(3), pages 1-19, January.
    9. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    10. Nelson, James & Johnson, Nathan G. & Doron, Pinchas & Stechel, Ellen B., 2018. "Thermodynamic modeling of solarized microturbine for combined heat and power applications," Applied Energy, Elsevier, vol. 212(C), pages 592-606.
    11. Khabbazian, Ghasem & Aminian, Javad & Khoshkhoo, Ramin Haghighi, 2022. "Experimental and numerical investigation of MILD combustion in a pilot-scale water heater," Energy, Elsevier, vol. 239(PA).
    12. Reyhaneh Banihabib & Mohsen Assadi, 2022. "A Hydrogen-Fueled Micro Gas Turbine Unit for Carbon-Free Heat and Power Generation," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    13. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2018. "Fostering distributed combustion in a swirl burner using prevaporized liquid fuels," Applied Energy, Elsevier, vol. 211(C), pages 513-522.
    14. Renzi, Massimiliano & Patuzzi, Francesco & Baratieri, Marco, 2017. "Syngas feed of micro gas turbines with steam injection: Effects on performance, combustion and pollutants formation," Applied Energy, Elsevier, vol. 206(C), pages 697-707.
    15. Sorrentino, Giancarlo & Sabia, Pino & Bozza, Pio & Ragucci, Raffaele & de Joannon, Mara, 2017. "Impact of external operating parameters on the performance of a cyclonic burner with high level of internal recirculation under MILD combustion conditions," Energy, Elsevier, vol. 137(C), pages 1167-1174.
    16. Pramanik, Santanu & Ravikrishna, R.V., 2020. "Investigation of novel scaling criteria on a reverse-flow combustor," Energy, Elsevier, vol. 206(C).
    17. Aslani, Mehrdad & Faraji, Jamal & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "A novel clustering-based method for reliability assessment of cyber-physical microgrids considering cyber interdependencies and information transmission errors," Applied Energy, Elsevier, vol. 315(C).
    18. Pappa, Alessio & Cordier, Marie & Bénard, Pierre & Bricteux, Laurent & De Paepe, Ward, 2022. "How do water and CO2 impact the stability and emissions of the combustion in a micro gas turbine? — A Large Eddy Simulations comparison," Energy, Elsevier, vol. 248(C).
    19. Al-attab, K.A. & Zainal, Z.A., 2018. "Micro gas turbine running on naturally aspirated syngas: An experimental investigation," Renewable Energy, Elsevier, vol. 119(C), pages 210-216.
    20. Valentina Fortunato & Andreas Giraldo & Mehdi Rouabah & Rabia Nacereddine & Michel Delanaye & Alessandro Parente, 2018. "Experimental and Numerical Investigation of a MILD Combustion Chamber for Micro Gas Turbine Applications," Energies, MDPI, vol. 11(12), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    2. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2018. "Fostering distributed combustion in a swirl burner using prevaporized liquid fuels," Applied Energy, Elsevier, vol. 211(C), pages 513-522.
    3. Xiaotao Zhang & Yichao Wu & Wenxian Zhang & Qixian Wang & Aijun Wang, 2022. "System Performance and Pollutant Emissions of Micro Gas Turbine Combined Cycle in Variable Fuel Type Cases," Energies, MDPI, vol. 15(23), pages 1-17, December.
    4. de Azevedo, Cláudia Gonçalves & de Andrade, José Carlos & de Souza Costa, Fernando, 2015. "Flameless compact combustion system for burning hydrous ethanol," Energy, Elsevier, vol. 89(C), pages 158-167.
    5. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    6. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2017. "Acoustic and heat release signatures for swirl assisted distributed combustion," Applied Energy, Elsevier, vol. 193(C), pages 125-138.
    7. Shen, Wenkai & Xing, Chang & Liu, Haiqing & Liu, Li & Hu, Qiming & Wu, Guohua & Yang, Yujia & Wu, Shaohua & Qiu, Penghua, 2022. "Exhaust gas recirculation effects on flame heat release rate distribution and dynamic characteristics in a micro gas turbine," Energy, Elsevier, vol. 249(C).
    8. Vela-García, Nicolas & Bolonio, David & Mosquera, Ana María & Ortega, Marcelo F. & García-Martínez, María-Jesús & Canoira, Laureano, 2020. "Techno-economic and life cycle assessment of triisobutane production and its suitability as biojet fuel," Applied Energy, Elsevier, vol. 268(C).
    9. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    10. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2013. "Hydrogen addition effects on high intensity distributed combustion," Applied Energy, Elsevier, vol. 104(C), pages 71-78.
    12. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2013. "Fuel flexible distributed combustion for efficient and clean gas turbine engines," Applied Energy, Elsevier, vol. 109(C), pages 267-274.
    14. Cremonez, Paulo André & Feroldi, Michael & de Araújo, Amanda Viana & Negreiros Borges, Maykon & Weiser Meier, Thompson & Feiden, Armin & Gustavo Teleken, Joel, 2015. "Biofuels in Brazilian aviation: Current scenario and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1063-1072.
    15. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    16. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Swirling flowfield for colorless distributed combustion," Applied Energy, Elsevier, vol. 113(C), pages 208-218.
    17. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. He, Yizhuo & Zou, Chun & Song, Yu & Liu, Yang & Zheng, Chuguang, 2016. "Numerical study of characteristics on NO formation in methane MILD combustion with simultaneously hot and diluted oxidant and fuel (HDO/HDF)," Energy, Elsevier, vol. 112(C), pages 1024-1035.
    19. Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K. & Lee, Sang Chun, 2012. "Low calorific value fuelled distributed combustion with swirl for gas turbine applications," Applied Energy, Elsevier, vol. 98(C), pages 69-78.
    20. Chiaramonti, David & Rizzo, Andrea Maria & Spadi, Adriano & Prussi, Matteo & Riccio, Giovanni & Martelli, Francesco, 2013. "Exhaust emissions from liquid fuel micro gas turbine fed with diesel oil, biodiesel and vegetable oil," Applied Energy, Elsevier, vol. 101(C), pages 349-356.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:159:y:2015:i:c:p:276-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.