IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v139y2015icp43-55.html
   My bibliography  Save this article

Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete

Author

Listed:
  • Memon, Shazim Ali
  • Cui, H.Z.
  • Zhang, Hang
  • Xing, Feng

Abstract

Structural–functional integrated materials are one of directions of rapid development for saving-energy materials. Phase Change Materials (PCMs) are latent thermal storage materials possessing a large amount of heat energy stored during its phase change stage. Porous lightweight aggregate (LWA) can serve as the carrier for PCM. In this research, a structural concrete with function of indoor temperature control were prepared by using macro encapsulated PCM–LWA. The indoor and outdoor tests were performed to determine the thermal performance of the lightweight aggregate concrete (LWAC) containing macro encapsulated Paraffin–LWA. The compressive strength and shrinkage strain of LWAC with macro encapsulated PCM–LWA were evaluated. Finally, the economic and environmental aspects of application of macro encapsulated Paraffin–LWA in a typical floor area of public housing rental flat in Hong Kong were assessed.

Suggested Citation

  • Memon, Shazim Ali & Cui, H.Z. & Zhang, Hang & Xing, Feng, 2015. "Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete," Applied Energy, Elsevier, vol. 139(C), pages 43-55.
  • Handle: RePEc:eee:appene:v:139:y:2015:i:c:p:43-55
    DOI: 10.1016/j.apenergy.2014.11.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914011714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.11.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2014. "Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials," Applied Energy, Elsevier, vol. 134(C), pages 456-468.
    2. Ma, Bingqian & Li, Jianqiang & Xu, Zhe & Peng, Zhijian, 2014. "Fe-shell/Cu-core encapsulated metallic phase change materials prepared by aerodynamic levitation method," Applied Energy, Elsevier, vol. 132(C), pages 568-574.
    3. Giro-Paloma, Jessica & Oncins, Gerard & Barreneche, Camila & Martínez, Mònica & Fernández, A. Inés & Cabeza, Luisa F., 2013. "Physico-chemical and mechanical properties of microencapsulated phase change material," Applied Energy, Elsevier, vol. 109(C), pages 441-448.
    4. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    5. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    6. Zhang, Zhengguo & Shi, Guoquan & Wang, Shuping & Fang, Xiaoming & Liu, Xiaohong, 2013. "Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material," Renewable Energy, Elsevier, vol. 50(C), pages 670-675.
    7. Xu, Biwan & Li, Zongjin, 2013. "Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage," Applied Energy, Elsevier, vol. 105(C), pages 229-237.
    8. Kuznik, Frédéric & David, Damien & Johannes, Kevyn & Roux, Jean-Jacques, 2011. "A review on phase change materials integrated in building walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 379-391, January.
    9. Zhang, Zhengguo & Zhang, Ni & Peng, Jing & Fang, Xiaoming & Gao, Xuenong & Fang, Yutang, 2012. "Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 91(1), pages 426-431.
    10. Li, Min & Kao, Hongtao & Wu, Zhishen & Tan, Jinmiao, 2011. "Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials," Applied Energy, Elsevier, vol. 88(5), pages 1606-1612, May.
    11. Li, Wei & Zhang, Rong & Jiang, Nan & Tang, Xiao-fen & Shi, Hai-feng & Zhang, Xing-xiang & Zhang, Yuankai & Dong, Lin & Zhang, Ningxin, 2013. "Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage," Energy, Elsevier, vol. 57(C), pages 607-614.
    12. Yu, Shiyu & Wang, Xiaodong & Wu, Dezhen, 2014. "Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluat," Applied Energy, Elsevier, vol. 114(C), pages 632-643.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Yasiri, Qudama & Szabó, Márta, 2022. "Energetic and thermal comfort assessment of phase change material passively incorporated building envelope in severe hot Climate: An experimental study," Applied Energy, Elsevier, vol. 314(C).
    2. Osman Gencel & Mehrab Nodehi & Gökhan Hekimoğlu & Abid Ustaoğlu & Ahmet Sarı & Gökhan Kaplan & Oguzhan Yavuz Bayraktar & Mucahit Sutcu & Togay Ozbakkaloglu, 2022. "Foam Concrete Produced with Recycled Concrete Powder and Phase Change Materials," Sustainability, MDPI, vol. 14(12), pages 1-25, June.
    3. Zhang, He & Xing, Feng & Cui, Hong-Zhi & Chen, Da-Zhu & Ouyang, Xing & Xu, Su-Zhen & Wang, Jia-Xin & Huang, Yi-Tian & Zuo, Jian-Dong & Tang, Jiao-Ning, 2016. "A novel phase-change cement composite for thermal energy storage: Fabrication, thermal and mechanical properties," Applied Energy, Elsevier, vol. 170(C), pages 130-139.
    4. Ramakrishnan, Sayanthan & Sanjayan, Jay & Wang, Xiaoming & Alam, Morshed & Wilson, John, 2015. "A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites," Applied Energy, Elsevier, vol. 157(C), pages 85-94.
    5. Bimaganbetova, Madina & Memon, Shazim Ali & Sheriyev, Almas, 2020. "Performance evaluation of phase change materials suitable for cities representing the whole tropical savanna climate region," Renewable Energy, Elsevier, vol. 148(C), pages 402-416.
    6. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    7. Wi, Seunghwan & Jeong, Su-Gwang & Chang, Seong Jin & Lee, Jongki & Kim, Sumin, 2017. "Evaluation of energy efficient hybrid hollow plaster panel using phase change material/xGnP composites," Applied Energy, Elsevier, vol. 205(C), pages 1548-1559.
    8. Ren, Miao & Liu, Yushi & Gao, Xiaojian, 2020. "Incorporation of phase change material and carbon nanofibers into lightweight aggregate concrete for thermal energy regulation in buildings," Energy, Elsevier, vol. 197(C).
    9. Maleki, Mahdi & Imani, Abolhassan & Ahmadi, Rouhollah & Banna Motejadded Emrooz, Hosein & Beitollahi, Ali, 2020. "Low-cost carbon foam as a practical support for organic phase change materials in thermal management," Applied Energy, Elsevier, vol. 258(C).
    10. Cui, Hongzhi & Tang, Waiching & Qin, Qinghua & Xing, Feng & Liao, Wenyu & Wen, Haibo, 2017. "Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball," Applied Energy, Elsevier, vol. 185(P1), pages 107-118.
    11. Ye, Rongda & Lin, Wenzhu & Yuan, Kunjie & Fang, Xiaoming & Zhang, Zhengguo, 2017. "Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 193(C), pages 325-335.
    12. Ren, Miao & Zhao, Hua & Gao, Xiaojian, 2022. "Effect of modified diatomite based shape-stabilized phase change materials on multiphysics characteristics of thermal storage mortar," Energy, Elsevier, vol. 241(C).
    13. Fu, Lulu & Wang, Qianhao & Ye, Rongda & Fang, Xiaoming & Zhang, Zhengguo, 2017. "A calcium chloride hexahydrate/expanded perlite composite with good heat storage and insulation properties for building energy conservation," Renewable Energy, Elsevier, vol. 114(PB), pages 733-743.
    14. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    15. Yi Zhang & Hongzhi Cui & Waiching Tang & Guochen Sang & Hong Wu, 2017. "Effect of Summer Ventilation on the Thermal Performance and Energy Efficiency of Buildings Utilizing Phase Change Materials," Energies, MDPI, vol. 10(8), pages 1-17, August.
    16. Shukla, Saunak & Bayomy, Ayman M. & Antoun, Sylvie & Mwesigye, Aggrey & Leong, Wey H. & Dworkin, Seth B., 2021. "Performance characterization of novel caisson-based thermal storage for ground source heat pumps," Renewable Energy, Elsevier, vol. 174(C), pages 43-54.
    17. M. M. Mousa & A. M. Bayomy & M. Z. Saghir, 2020. "Experimental and Numerical Study on Energy Piles with Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-21, September.
    18. Ndiaye, Khadim & Ginestet, Stéphane & Cyr, Martin, 2018. "Experimental evaluation of two low temperature energy storage prototypes based on innovative cementitious material," Applied Energy, Elsevier, vol. 217(C), pages 47-55.
    19. Faraj, Khaireldin & Khaled, Mahmoud & Faraj, Jalal & Hachem, Farouk & Castelain, Cathy, 2020. "Phase change material thermal energy storage systems for cooling applications in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    20. Jaewook Lee & Jiyoung Park, 2018. "Phase Change Material (PCM) Application in a Modernized Korean Traditional House (Hanok)," Sustainability, MDPI, vol. 10(4), pages 1-15, March.
    21. Rouba Joumblat & Zaher Al Basiouni Al Masri & Ghazi Al Khateeb & Adel Elkordi & Abdel Rahman El Tallis & Joseph Absi, 2023. "State-of-the-Art Review on Permanent Deformation Characterization of Asphalt Concrete Pavements," Sustainability, MDPI, vol. 15(2), pages 1-34, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Biwan & Li, Zongjin, 2014. "Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites," Energy, Elsevier, vol. 72(C), pages 371-380.
    2. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    3. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 581-596.
    4. Xu, Biwan & Li, Zongjin, 2014. "Performance of novel thermal energy storage engineered cementitious composites incorporating a paraffin/diatomite composite phase change material," Applied Energy, Elsevier, vol. 121(C), pages 114-122.
    5. Memon, Shazim Ali & Cui, Hongzhi & Lo, Tommy Y. & Li, Qiusheng, 2015. "Development of structural–functional integrated concrete with macro-encapsulated PCM for thermal energy storage," Applied Energy, Elsevier, vol. 150(C), pages 245-257.
    6. Cao, Lei & Su, Di & Tang, Yaojie & Fang, Guiyin & Tang, Fang, 2015. "Properties evaluation and applications of thermal energystorage materials in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 500-522.
    7. Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach," Applied Energy, Elsevier, vol. 207(C), pages 654-664.
    8. Khadiran, Tumirah & Hussein, Mohd Zobir & Zainal, Zulkarnain & Rusli, Rafeadah, 2016. "Advanced energy storage materials for building applications and their thermal performance characterization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 916-928.
    9. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    10. Mingli Li & Guoqing Gui & Zhibin Lin & Long Jiang & Hong Pan & Xingyu Wang, 2018. "Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings," Sustainability, MDPI, vol. 10(8), pages 1-23, July.
    11. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    12. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    13. Cheng, Wenlong & Xie, Biao & Zhang, Rongming & Xu, Zhiming & Xia, Yuting, 2015. "Effect of thermal conductivities of shape stabilized PCM on under-floor heating system," Applied Energy, Elsevier, vol. 144(C), pages 10-18.
    14. Ramakrishnan, Sayanthan & Sanjayan, Jay & Wang, Xiaoming & Alam, Morshed & Wilson, John, 2015. "A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites," Applied Energy, Elsevier, vol. 157(C), pages 85-94.
    15. Li, Min & Guo, Qiangang, 2015. "The preparation of the hydrotalcite-based composite phase change material," Applied Energy, Elsevier, vol. 156(C), pages 207-212.
    16. Ren, Miao & Liu, Yushi & Gao, Xiaojian, 2020. "Incorporation of phase change material and carbon nanofibers into lightweight aggregate concrete for thermal energy regulation in buildings," Energy, Elsevier, vol. 197(C).
    17. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    18. Qiu, Lin & Ouyang, Yuxin & Feng, Yanhui & Zhang, Xinxin, 2019. "Review on micro/nano phase change materials for solar thermal applications," Renewable Energy, Elsevier, vol. 140(C), pages 513-538.
    19. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    20. Miliozzi, Adio & Chieruzzi, Manila & Torre, Luigi, 2019. "Experimental investigation of a cementitious heat storage medium incorporating a solar salt/diatomite composite phase change material," Applied Energy, Elsevier, vol. 250(C), pages 1023-1035.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:139:y:2015:i:c:p:43-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.