IDEAS home Printed from
   My bibliography  Save this article

Environmental impacts of microgeneration: Integrating solar PV, Stirling engine CHP and battery storage


  • Balcombe, Paul
  • Rigby, Dan
  • Azapagic, Adisa


A rapid increase in household solar PV uptake has caused concerns regarding intermittent exports of electricity to the grid and related balancing problems. A microgeneration system combining solar PV, combined heat and power plant (CHP) and battery storage could potentially mitigate these problems whilst improving household energy self-sufficiency. This research examines if this could also lead to lower environmental impacts compared to conventional supply of electricity and heat. Life cycle assessment has been carried out for these purposes simulating daily and seasonal energy demand of different household types. The results suggest that the impacts are reduced by 35–100% compared to electricity from the grid and heat from gas boilers. The exception is depletion of elements which is 42 times higher owing to the antimony used for battery manufacture. There is a large variation in impacts with household energy demand, with higher consumption resulting in a far greater reduction in impacts compared to the conventional supply. CHP inefficiency caused by user maloperation can decrease the environmental benefits of the system significantly; for example, the global warming potential increases by 17%. This highlights the need for consumer information and training to ensure maximum environmental benefits of microgeneration. Appropriate battery sizing is essential with the 10–20kWh batteries providing greatest environmental benefits. However, any reduction in impacts from battery storage is heavily dependent on the assumptions for system credits for electricity export to the grid. Effective management of the battery operation is also required to maximise the battery lifetime: a reduction from 10 to five years increases depletion of elements by 45% and acidification by 32%. Increasing the recycling of metals from 0% to 100% reduces the impacts from 46% to 179%. If 90% of antimony is recycled, the depletion of elements is reduced by three times compared to the use of virgin antimony. However, this impact is still 12 times higher than for the conventional system owing to the use of other metals in the system.

Suggested Citation

  • Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2015. "Environmental impacts of microgeneration: Integrating solar PV, Stirling engine CHP and battery storage," Applied Energy, Elsevier, vol. 139(C), pages 245-259.
  • Handle: RePEc:eee:appene:v:139:y:2015:i:c:p:245-259
    DOI: 10.1016/j.apenergy.2014.11.034

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Mohamed Ariff & Munawar Iqbal, 2011. "Introduction to Islamic Financial Institutions," Chapters, in: Mohamed Ariff & Munawar Iqbal (ed.), The Foundations of Islamic Banking, chapter 1, Edward Elgar Publishing.
    2. McManus, M.C., 2012. "Environmental consequences of the use of batteries in low carbon systems: The impact of battery production," Applied Energy, Elsevier, vol. 93(C), pages 288-295.
    3. Lombardi, K. & Ugursal, V.I. & Beausoleil-Morrison, I., 2010. "Proposed improvements to a model for characterizing the electrical and thermal energy performance of Stirling engine micro-cogeneration devices based upon experimental observations," Applied Energy, Elsevier, vol. 87(10), pages 3271-3282, October.
    4. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2014. "Investigating the importance of motivations and barriers related to microgeneration uptake in the UK," Applied Energy, Elsevier, vol. 130(C), pages 403-418.
    5. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2010. "Energy pay-back period analysis of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 35(7), pages 1444-1454.
    6. McKenna, Eoghan & McManus, Marcelle & Cooper, Sam & Thomson, Murray, 2013. "Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems," Applied Energy, Elsevier, vol. 104(C), pages 239-249.
    7. Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Bernal-Agustín, José L., 2014. "Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems," Applied Energy, Elsevier, vol. 115(C), pages 242-253.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kneiske, T.M. & Braun, M. & Hidalgo-Rodriguez, D.I., 2018. "A new combined control algorithm for PV-CHP hybrid systems," Applied Energy, Elsevier, vol. 210(C), pages 964-973.
    2. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    3. Kanyarusoke, Kant E. & Gryzagoridis, Jasson & Oliver, Graeme, 2016. "Re-mapping sub-Sahara Africa for equipment selection to photo electrify energy poor homes," Applied Energy, Elsevier, vol. 175(C), pages 240-250.
    4. Zheng, J.H. & Wu, Q.H. & Jing, Z.X., 2017. "Coordinated scheduling strategy to optimize conflicting benefits for daily operation of integrated electricity and gas networks," Applied Energy, Elsevier, vol. 192(C), pages 370-381.
    5. Tavakolpour-Saleh, A.R. & Zare, Sh. & Omidvar, A., 2016. "Applying perturbation technique to analysis of a free piston Stirling engine possessing nonlinear springs," Applied Energy, Elsevier, vol. 183(C), pages 526-541.
    6. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Lu, Yashun & Ji, Jie, 2018. "Life-cycle assessment of a low-concentration PV module for building south wall integration in China," Applied Energy, Elsevier, vol. 215(C), pages 174-185.
    7. Heli Kasurinen & Saija Vatanen & Kaisa Grönman & Tiina Pajula & Laura Lakanen & Olli Salmela & Risto Soukka, 2019. "Carbon Handprint: Potential Climate Benefits of a Novel Liquid-Cooled Base Station with Waste Heat Reuse," Energies, MDPI, Open Access Journal, vol. 12(23), pages 1-18, November.
    8. Dongmin Yu & Huanan Liu & Gangui Yan & Jing Jiang & Simon Le Blond, 2017. "Optimization of Hybrid Energy Storage Systems at the Building Level with Combined Heat and Power Generation," Energies, MDPI, Open Access Journal, vol. 10(5), pages 1-15, May.
    9. Carlos J. Sarasa-Maestro & Rodolfo Dufo-López & José L. Bernal-Agustín, 2016. "Analysis of Photovoltaic Self-Consumption Systems," Energies, MDPI, Open Access Journal, vol. 9(9), pages 1-18, August.
    10. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    11. Shi, Huaizhou & Blaauwbroek, Niels & Nguyen, Phuong H. & Kamphuis, René (I.G.), 2016. "Energy management in Multi-Commodity Smart Energy Systems with a greedy approach," Applied Energy, Elsevier, vol. 167(C), pages 385-396.
    12. Jimenez, Maritza & Franco, Carlos J. & Dyner, Isaac, 2016. "Diffusion of renewable energy technologies: The need for policy in Colombia," Energy, Elsevier, vol. 111(C), pages 818-829.
    13. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    14. Gazda, Wiesław & Stanek, Wojciech, 2016. "Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system," Applied Energy, Elsevier, vol. 169(C), pages 138-149.
    15. Kneiske, T.M. & Niedermeyer, F. & Boelling, C., 2019. "Testing a model predictive control algorithm for a PV-CHP hybrid system on a laboratory test-bench," Applied Energy, Elsevier, vol. 242(C), pages 121-137.
    16. Hai Lan & Jinfeng Dai & Shuli Wen & Ying-Yi Hong & David C. Yu & Yifei Bai, 2015. "Optimal Tilt Angle of Photovoltaic Arrays and Economic Allocation of Energy Storage System on Large Oil Tanker Ship," Energies, MDPI, Open Access Journal, vol. 8(10), pages 1-16, October.
    17. Ni, Mingjiang & Shi, Bingwei & Xiao, Gang & Peng, Hao & Sultan, Umair & Wang, Shurong & Luo, Zhongyang & Cen, Kefa, 2016. "Improved Simple Analytical Model and experimental study of a 100W β-type Stirling engine," Applied Energy, Elsevier, vol. 169(C), pages 768-787.
    18. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, Open Access Journal, vol. 8(1), pages 1-15, March.
    19. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:139:y:2015:i:c:p:245-259. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.