CFD simulation of a TG–DSC furnace during the indium phase change process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2012.07.019
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Granada, E. & Eguía, P. & Vilan, J.A. & Comesaña, J.A. & Comesaña, R., 2012. "FTIR quantitative analysis technique for gases. Application in a biomass thermochemical process," Renewable Energy, Elsevier, vol. 41(C), pages 416-421.
- Chen, Chunxiang & Ma, Xiaoqian & Liu, Kai, 2011. "Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations," Applied Energy, Elsevier, vol. 88(9), pages 3189-3196.
- Muthuraman, Marisamy & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis," Applied Energy, Elsevier, vol. 87(1), pages 141-148, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chhabra, Vibhuti & Bambery, Keith & Bhattacharya, Sankar & Shastri, Yogendra, 2020. "Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components," Renewable Energy, Elsevier, vol. 148(C), pages 388-401.
- Aniza, Ria & Chen, Wei-Hsin & Lin, Yu-Ying & Tran, Khanh-Quang & Chang, Jo-Shu & Lam, Su Shiung & Park, Young-Kwon & Kwon, Eilhann E. & Tabatabaei, Meisam, 2021. "Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae," Applied Energy, Elsevier, vol. 300(C).
- Wu, Keng-Tung & Tsai, Chia-Ju & Chen, Chih-Shen & Chen, Hsiao-Wei, 2012. "The characteristics of torrefied microalgae," Applied Energy, Elsevier, vol. 100(C), pages 52-57.
- Watanabe, Hideo & Li, Dalin & Nakagawa, Yoshinao & Tomishige, Keiichi & Kaya, Kunimitsu & Watanabe, Makoto M., 2014. "Characterization of oil-extracted residue biomass of Botryococcus braunii as a biofuel feedstock and its pyrolytic behavior," Applied Energy, Elsevier, vol. 132(C), pages 475-484.
- Yanfen, Liao & Xiaoqian, Ma, 2010. "Thermogravimetric analysis of the co-combustion of coal and paper mill sludge," Applied Energy, Elsevier, vol. 87(11), pages 3526-3532, November.
- Dessì, Federica & Mureddu, Mauro & Ferrara, Francesca & Fermoso, Javier & Orsini, Alessandro & Sanna, Aimaro & Pettinau, Alberto, 2021. "Thermogravimetric characterisation and kinetic analysis of Nannochloropsis sp. and Tetraselmis sp. microalgae for pyrolysis, combustion and oxy-combustion," Energy, Elsevier, vol. 217(C).
- Söyler, Nejmi & Goldfarb, Jillian L. & Ceylan, Selim & Saçan, Melek Türker, 2017. "Renewable fuels from pyrolysis of Dunaliella tertiolecta: An alternative approach to biochemical conversions of microalgae," Energy, Elsevier, vol. 120(C), pages 907-914.
- Zhao, Peitao & Chen, Hongfang & Ge, Shifu & Yoshikawa, Kunio, 2013. "Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion," Applied Energy, Elsevier, vol. 111(C), pages 199-205.
- Ferreira, L.S. & Rodrigues, M.S. & Converti, A. & Sato, S. & Carvalho, J.C.M., 2012. "Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor: Use of no-cost CO2 from ethanol fermentation," Applied Energy, Elsevier, vol. 92(C), pages 379-385.
- Ma, Jiao & Mu, Lan & Zhang, Zhikun & Wang, Zhuozhi & Shen, Boxiong & Zhang, Lei & Li, Aimin, 2020. "The effects of the modification of biodegradation and the interaction of bulking agents on the combustion characteristics of biodried products derived from municipal organic wastes," Energy, Elsevier, vol. 209(C).
- Feng, Dongdong & Zhang, Yu & Zhao, Yijun & Sun, Shaozeng, 2018. "Catalytic effects of ion-exchangeable K+ and Ca2+ on rice husk pyrolysis behavior and its gas–liquid–solid product properties," Energy, Elsevier, vol. 152(C), pages 166-177.
- Shen, Yafei & Yu, Shili & Ge, Shun & Chen, Xingming & Ge, Xinlei & Chen, Mindong, 2017. "Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale," Energy, Elsevier, vol. 118(C), pages 312-323.
- Wang, Qing & Zhao, Weizhen & Liu, Hongpeng & Jia, Chunxia & Li, Shaohua, 2011. "Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion," Applied Energy, Elsevier, vol. 88(6), pages 2080-2087, June.
- Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
- Yu, Yan & Lau, Anthony & Sokhansanj, Shahabaddine, 2022. "Hydrothermal carbonization and pelletization of moistened wheat straw," Renewable Energy, Elsevier, vol. 190(C), pages 1018-1028.
- Dong, Xinyuan & Wang, Zhixing & Zhang, Junhong & Zhan, Wenlong & Gao, Lihua & He, Zhijun, 2024. "Synthesis and characteristics of carbon-based synfuel from biomass and coal powder by synergistic co-carbonization technology," Renewable Energy, Elsevier, vol. 227(C).
- Granada, Enrique & Míguez, J.L. & Febrero, Lara & Collazo, Joaquín & Eguía, Pablo, 2013. "Development of an experimental technique for oil recovery during biomass pyrolysis," Renewable Energy, Elsevier, vol. 60(C), pages 179-184.
- Prawisudha, Pandji & Namioka, Tomoaki & Yoshikawa, Kunio, 2012. "Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment," Applied Energy, Elsevier, vol. 90(1), pages 298-304.
- Xie, Candie & Liu, Jingyong & Zhang, Xiaochun & Xie, Wuming & Sun, Jian & Chang, Kenlin & Kuo, Jiahong & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fatih, 2018. "Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks," Applied Energy, Elsevier, vol. 212(C), pages 786-795.
- Zou, Huihuang & Liu, Chao & Evrendilek, Fatih & He, Yao & Liu, Jingyong, 2021. "Evaluation of reaction mechanisms and emissions of oily sludge and coal co-combustions in O2/CO2 and O2/N2 atmospheres," Renewable Energy, Elsevier, vol. 171(C), pages 1327-1343.
More about this item
Keywords
CFD; TGA; DSC; Indium; Melting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:293-298. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.