IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v101y2013icp333-340.html
   My bibliography  Save this article

A comparison between Miscanthus and bioethanol waste pellets and their performance in a downdraft gasifier

Author

Listed:
  • Kallis, Kyriakos X.
  • Pellegrini Susini, Giacomo A.
  • Oakey, John E.

Abstract

Pelletised biomass has been found to have excellent potential for their utilisation in small to medium sized energy systems because of its advantages over loose feedstock. The energy density is increased and so the space occupied in transportation is decreased and the amount of problematic dust or fines is also decreased. Furthermore, pellets provide a more uniform fuel, allowing easier feeding and improved performance in thermal conversion processes. The pellet manufacturing process, or pelletisation process, plays a major role on the quality of pellets produced. Changes to pelletisation parameters such as feedstock moisture content, die diameter, particle size (or screen size), addition of lubricants or binders can significantly alter the quality of the pellets and therefore the ease with which the pellets can be gasified in a downdraft gasification process. One important quality parameter that greatly affects the downdraft gasification process is the strength or durability of pellets. Durability can be defined as the ability of pellets to resist mechanical breakdown during transport or during feeding into an energy plant. Other important parameters that affect downdraft gasification are the ash content and composition of the pellets. The ash is derived from the minerals in the feedstock, the addition of binders or lubricants and also the pellet production method. Furthermore, gasification efficiency can be also affected by the process parameters such as air-to-fuel ratio, air or biomass feed rate and operating temperature. The current article compares the properties of three different types of pellets and their gasification performance. Two types of Miscanthusand a bioethanol production reside (distiller’s dried grains with solubles (DDGS)) were used to make the pellets. The pellets made were of similar size (6–8mm) and ultimate analysis, so the paper focuseson the most important differences; these were durability, ash content and gasification parameters, expressed through the equivalence ratio which relates the actual air-to-fuel ratio with the calculated stoichiometric value. A series of experiments were conducted in a 50kWth pilot scale downdraft gasifier with the equivalence ratio varied in the range 0.2–0.3. The quality of the gas produced and the gasifier performance were assessed in terms of the gas composition, yield, heating value, cold gas efficiency and carbon conversion efficiency.

Suggested Citation

  • Kallis, Kyriakos X. & Pellegrini Susini, Giacomo A. & Oakey, John E., 2013. "A comparison between Miscanthus and bioethanol waste pellets and their performance in a downdraft gasifier," Applied Energy, Elsevier, vol. 101(C), pages 333-340.
  • Handle: RePEc:eee:appene:v:101:y:2013:i:c:p:333-340
    DOI: 10.1016/j.apenergy.2012.01.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912000438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.01.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pellegrini, Luiz Felipe & de Oliveira, Silvio, 2007. "Exergy analysis of sugarcane bagasse gasification," Energy, Elsevier, vol. 32(4), pages 314-327.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suyitno & Heru Sutanto & Mohammad Muqoffa & Tito Gusti Nurrohim, 2022. "An Experimental and Numerical Study of the Burning of Calliandra Wood Pellets in a 200 kW Furnace," Energies, MDPI, vol. 15(21), pages 1-14, November.
    2. Pulla Rose Havilah & Amit Kumar Sharma & Gopalakrishnan Govindasamy & Leonidas Matsakas & Alok Patel, 2022. "Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas," Energies, MDPI, vol. 15(11), pages 1-19, May.
    3. Bajwa, Dilpreet S. & Peterson, Tyler & Sharma, Neeta & Shojaeiarani, Jamileh & Bajwa, Sreekala G., 2018. "A review of densified solid biomass for energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 296-305.
    4. Khan, Zakir & Kamble, Prashant & Reza Check, Gholam & DiLallo, Trevor & O'Sullivan, Willy & Turner, Ellen D. & Mackay, Andrew & Blanco-Sanchez, Paula & Yu, Xi & Bridgwater, Anthony & Paul McCalmont, J, 2022. "Design, instrumentation, and operation of a standard downdraft, laboratory-scale gasification testbed utilising novel seed-propagated hybrid Miscanthus pellets," Applied Energy, Elsevier, vol. 315(C).
    5. Roy, Murari Mohon & Dutta, Animesh & Corscadden, Kenny, 2013. "An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace," Applied Energy, Elsevier, vol. 108(C), pages 298-307.
    6. Tejasvi Sharma & Diego M. Yepes Maya & Francisco Regis M. Nascimento & Yunye Shi & Albert Ratner & Electo E. Silva Lora & Lourival Jorge Mendes Neto & Jose Carlos Escobar Palacios & Rubenildo Vieira A, 2018. "An Experimental and Theoretical Study of the Gasification of Miscanthus Briquettes in a Double-Stage Downdraft Gasifier: Syngas, Tar, and Biochar Characterization," Energies, MDPI, vol. 11(11), pages 1-23, November.
    7. Sarkar, Madhura & Kumar, Ajay & Tumuluru, Jaya Shankar & Patil, Krushna N. & Bellmer, Danielle D., 2014. "Gasification performance of switchgrass pretreated with torrefaction and densification," Applied Energy, Elsevier, vol. 127(C), pages 194-201.
    8. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.
    9. Susastriawan, A.A.P. & Saptoadi, Harwin & Purnomo,, 2017. "Small-scale downdraft gasifiers for biomass gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 989-1003.
    10. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    2. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    3. Degerli, Bahar & Nazir, Serap & Sorgüven, Esra & Hitzmann, Bernd & Özilgen, Mustafa, 2015. "Assessment of the energy and exergy efficiencies of farm to fork grain cultivation and bread making processes in Turkey and Germany," Energy, Elsevier, vol. 93(P1), pages 421-434.
    4. Dias, Marina O.S. & Modesto, Marcelo & Ensinas, Adriano V. & Nebra, Silvia A. & Filho, Rubens Maciel & Rossell, Carlos E.V., 2011. "Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems," Energy, Elsevier, vol. 36(6), pages 3691-3703.
    5. Sahoo, Abanti & Ram, Deo Karan, 2015. "Gasifier performance and energy analysis for fluidized bed gasification of sugarcane bagasse," Energy, Elsevier, vol. 90(P2), pages 1420-1425.
    6. Copa Rey, José Ramón & Tamayo Pacheco, Jorge Jadid & António da Cruz Tarelho, Luís & Silva, Valter & Cardoso, João Sousa & Silveira, José Luz & Tuna, Celso Eduardo, 2021. "Evaluation of cogeneration alternative systems integrating biomass gasification applied to a Brazilian sugar industry," Renewable Energy, Elsevier, vol. 178(C), pages 318-333.
    7. Parvez, A.M. & Mujtaba, I.M. & Wu, T., 2016. "Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification," Energy, Elsevier, vol. 94(C), pages 579-588.
    8. Meriño Stand, L. & Valencia Ochoa, G. & Duarte Forero, J., 2021. "Energy and exergy assessment of a combined supercritical Brayton cycle-orc hybrid system using solar radiation and coconut shell biomass as energy source," Renewable Energy, Elsevier, vol. 175(C), pages 119-142.
    9. Mendiburu, Andrés Z. & Carvalho, João A. & Coronado, Christian J.R., 2014. "Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models," Energy, Elsevier, vol. 66(C), pages 189-201.
    10. Sreejith, C.C. & Haridasan, Navaneeth & Muraleedharan, C. & Arun, P., 2014. "Allothermal air–steam gasification of biomass with CO2 (carbon dioxide) sorption: Performance prediction based on a chemical kinetic model," Energy, Elsevier, vol. 69(C), pages 399-408.
    11. Rovas, Dimitrios & Zabaniotou, Anastasia, 2015. "Exergy analysis of a small gasification-ICE integrated system for CHP production fueled with Mediterranean agro-food processing wastes: The SMARt-CHP," Renewable Energy, Elsevier, vol. 83(C), pages 510-517.
    12. García-Velásquez, Carlos A. & Cardona, Carlos A., 2019. "Comparison of the biochemical and thermochemical routes for bioenergy production: A techno-economic (TEA), energetic and environmental assessment," Energy, Elsevier, vol. 172(C), pages 232-242.
    13. Bhattacharya, Abhishek & Manna, Dulal & Paul, Bireswar & Datta, Amitava, 2011. "Biomass integrated gasification combined cycle power generation with supplementary biomass firing: Energy and exergy based performance analysis," Energy, Elsevier, vol. 36(5), pages 2599-2610.
    14. Ahmed, I.I. & Gupta, A.K., 2012. "Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution," Applied Energy, Elsevier, vol. 91(1), pages 75-81.
    15. Fadare, D.A. & Nkpubre, D.O. & Oni, A.O. & Falana, A. & Waheed, M.A. & Bamiro, O.A., 2010. "Energy and exergy analyses of malt drink production in Nigeria," Energy, Elsevier, vol. 35(12), pages 5336-5346.
    16. Loha, Chanchal & Gu, Sai & De Wilde, Juray & Mahanta, Pinakeswar & Chatterjee, Pradip K., 2014. "Advances in mathematical modeling of fluidized bed gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 688-715.
    17. Pellegrini, Luiz Felipe & de Oliveira Júnior, Silvio & Burbano, Juan Carlos, 2010. "Supercritical steam cycles and biomass integrated gasification combined cycles for sugarcane mills," Energy, Elsevier, vol. 35(2), pages 1172-1180.
    18. Wang, Yu & Ren, Changyifan & Guo, Shenghui & Liu, Shi & Du, Mingming & Chen, Yunan & Guo, Liejin, 2023. "Thermodynamic and environmental analysis of heat supply in pig manure supercritical water gasification system," Energy, Elsevier, vol. 263(PA).
    19. Ahmed, Tigabwa Y. & Ahmad, Murni M. & Yusup, Suzana & Inayat, Abrar & Khan, Zakir, 2012. "Mathematical and computational approaches for design of biomass gasification for hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2304-2315.
    20. Silva, Isabelly P. & Lima, Rafael M.A. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2019. "Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:101:y:2013:i:c:p:333-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.