IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v431y2022ics0096300322003848.html
   My bibliography  Save this article

Importance of Numerical Implementation and Clustering Analysis in Force-Directed Algorithms for Accurate Community Detection

Author

Listed:
  • Gouvêa, Alessandra M.M.M.
  • Rubido, Nicolás
  • Macau, Elbert E.N.
  • Quiles, Marcos G.

Abstract

Real-world networks show community structures – groups of nodes that are densely intra-connected and sparsely inter-connected to other groups. Nevertheless, Community Detection (CD) is non-trivial, since identifying these groups of nodes according to their local connectivity can hold many plausible solutions, leading to the creation of different methods. In particular, CD has recently been achieved by Force-Directed Algorithms (FDAs), which originally were designed as a way to visualize networks. FDAs map the network nodes as particles in a D-dimensional space that are affected by forces acting in accordance to the connectivity. However, the literature on FDA-based methods for CD has grown in parallel from the classical methods, leaving several open questions, such as how accurately FDAs can recover communities compared to classical methods. In this work, we start to fill these gaps by evaluating different numerical implementations of 5 FDA methods and different clustering analyses on state-of-the-art network benchmarks – including networks with or without weights and networks with a hierarchical organisation. We also compare these results with 8, well-known, classical CD methods. Our findings show that FDA methods can achieve higher accuracy than classical methods, albeit their effectiveness depends on the chosen setting – with optimisation techniques leading over numerical integration and distance-based clustering algorithms leading over density-based ones. Overall, our work provides detailed information for any researcher aiming to apply FDAs for community detection.

Suggested Citation

  • Gouvêa, Alessandra M.M.M. & Rubido, Nicolás & Macau, Elbert E.N. & Quiles, Marcos G., 2022. "Importance of Numerical Implementation and Clustering Analysis in Force-Directed Algorithms for Accurate Community Detection," Applied Mathematics and Computation, Elsevier, vol. 431(C).
  • Handle: RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322003848
    DOI: 10.1016/j.amc.2022.127310
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322003848
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Luce & Albert Perry, 1949. "A method of matrix analysis of group structure," Psychometrika, Springer;The Psychometric Society, vol. 14(2), pages 95-116, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noah E. Friedkin, 1984. "Structural Cohesion and Equivalence Explanations of Social Homogeneity," Sociological Methods & Research, , vol. 12(3), pages 235-261, February.
    2. Zhu, Yongjun & Yan, Erjia, 2017. "Examining academic ranking and inequality in library and information science through faculty hiring networks," Journal of Informetrics, Elsevier, vol. 11(2), pages 641-654.
    3. Etienne Farvaque & Frédéric Gannon, 2018. "Profiling giants: the networks and influence of Buchanan and Tullock," Public Choice, Springer, vol. 175(3), pages 277-302, June.
    4. Vanhaverbeke, W.P.M. & Beerkens, B.E. & Duysters, G.M., 2003. "Explorative and exploitative learning strategies in technology-based alliance networks," Working Papers 03.22, Eindhoven Center for Innovation Studies.
    5. K. Parthasarathy, 1964. "Enumeration of paths in digraphs," Psychometrika, Springer;The Psychometric Society, vol. 29(2), pages 153-165, June.
    6. Nasirian, Farzaneh & Mahdavi Pajouh, Foad & Balasundaram, Balabhaskar, 2020. "Detecting a most closeness-central clique in complex networks," European Journal of Operational Research, Elsevier, vol. 283(2), pages 461-475.
    7. William Ray Arney, 1973. "A Refined Status Index for Sociometric Data," Sociological Methods & Research, , vol. 1(3), pages 329-346, February.
    8. Lawrence Hubert, 1974. "Some applications of graph theory to clustering," Psychometrika, Springer;The Psychometric Society, vol. 39(3), pages 283-309, September.
    9. Chitra Balasubramaniam & Sergiy Butenko, 2017. "On robust clusters of minimum cardinality in networks," Annals of Operations Research, Springer, vol. 249(1), pages 17-37, February.
    10. Fetta, Angelico & Harper, Paul & Knight, Vincent & Williams, Janet, 2018. "Predicting adolescent social networks to stop smoking in secondary schools," European Journal of Operational Research, Elsevier, vol. 265(1), pages 263-276.
    11. Balabhaskar Balasundaram & Sergiy Butenko & Illya V. Hicks, 2011. "Clique Relaxations in Social Network Analysis: The Maximum k -Plex Problem," Operations Research, INFORMS, vol. 59(1), pages 133-142, February.
    12. Theodore Tsekeris, 2017. "Network analysis of inter-sectoral relationships and key sectors in the Greek economy," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 413-435, July.
    13. Santella, Paolo & Drago, Carlo & Polo, Andrea, 2007. "The Italian Chamber of Lords Sits on Listed Company Boards: An Empirical Analysis of Italian Listed Company Boards from 1998 to 2006," MPRA Paper 2265, University Library of Munich, Germany.
    14. Belik, Ivan, 2014. "The Analysis of Split Graphs in Social Networks Based on the K-Cardinality Assignment Problem," Discussion Papers 2014/8, Norwegian School of Economics, Department of Business and Management Science.
    15. Verbeke, W.J.M.I. & Wuyts, S.H.K., 2006. "Moving in Social Circles – Social Circle Membership and Performance Implications," ERIM Report Series Research in Management ERS-2006-041-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Idan Menashe & Pascal Grange & Eric C Larsen & Sharmila Banerjee-Basu & Partha P Mitra, 2013. "Co-expression Profiling of Autism Genes in the Mouse Brain," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-10, July.
    17. Nadine V. Kegen, 2015. "Cohesive subgroups in academic networks: unveiling clique integration of top-level female and male researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(3), pages 897-922, June.
    18. Zhuqi Miao & Balabhaskar Balasundaram, 2020. "An Ellipsoidal Bounding Scheme for the Quasi-Clique Number of a Graph," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 763-778, July.
    19. Ozman, Müge, 2003. "Self-Organizing Inter-Firm Networks," Research Memorandum 022, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).
    20. Melisew Tefera Belachew & Nicolas Gillis, 2017. "Solving the Maximum Clique Problem with Symmetric Rank-One Non-negative Matrix Approximation," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 279-296, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322003848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.