IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v284y2016icp66-78.html
   My bibliography  Save this article

Symmetry breaking in cyclic competition by niche construction

Author

Listed:
  • Han, Xiaozhuo
  • Chen, Baoying
  • Hui, Cang

Abstract

Niche construction theory, which portrays organisms as active agents that modify their environment rather than mere passive entities selected by their environment, has received increasing attention in ecology and evolutionary biology. Here, we investigate the ecological consequences of niche construction in the system of three cyclically competing metapopulations, engaging a rock–scissors–paper game. Using cellular automata, we detected a variety of dynamic behaviors, including damped oscillation, periodical fluctuation and stage equilibrium, and the system transformed from disorder to order with gradually increasing niche-constructing intensity. Increasing niche-constructing intensity of a species, counterintuitively, reduced its own occupancy, but increased that of its inferior competitor. These species displayed interesting ripples in the two-dimension lattice space, with the pattern sensitive to the symmetry of competition intensity and other vital rates. Spatial heterogeneity induced by niche construction, together with the competition hierarchy, formed a stable and fixed range for each species with clear boundaries. Our results highlighted the necessity of investigating the adaptive dynamics of niche constructing traits to better understand the eco-evolutionary consequence of niche construction.

Suggested Citation

  • Han, Xiaozhuo & Chen, Baoying & Hui, Cang, 2016. "Symmetry breaking in cyclic competition by niche construction," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 66-78.
  • Handle: RePEc:eee:apmaco:v:284:y:2016:i:c:p:66-78
    DOI: 10.1016/j.amc.2016.02.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316301758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.02.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Sha-Sha & Qiang, Cheng-Cang, 2013. "Self-organization of five species in a cyclic competition game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4675-4682.
    2. M. Doebeli & U. Dieckmann, 2000. "Evolutionary Branching and Sympatric Speciation Caused by Different Types of Ecological Interactions," Working Papers ir00040, International Institute for Applied Systems Analysis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Junpyo, 2018. "Multistability of extinction states in the toy model for three species," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 92-98.
    2. Park, Junpyo, 2018. "Balancedness among competitions for biodiversity in the cyclic structured three species system," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 425-436.
    3. Park, Junpyo, 2021. "Evolutionary dynamics in the rock-paper-scissors system by changing community paradigm with population flow," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Kabir, K.M. Ariful & Tanimoto, Jun, 2021. "The role of pairwise nonlinear evolutionary dynamics in the rock–paper–scissors game with noise," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    5. Szolnoki, Attila & Perc, Matjaž, 2023. "Oppressed species can form a winning pair in a multi-species ecosystem," Applied Mathematics and Computation, Elsevier, vol. 438(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Ryoo Kyung & Park, Junpyo, 2023. "Evolutionary dynamics in the cyclic competition system of seven species: Common cascading dynamics in biodiversity," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Pachepsky, Elizaveta & Bown, James L. & Eberst, Alistair & Bausenwein, Ursula & Millard, Peter & Squire, Geoff R. & Crawford, John W., 2007. "Consequences of intraspecific variation for the structure and function of ecological communities Part 2: Linking diversity and function," Ecological Modelling, Elsevier, vol. 207(2), pages 277-285.
    3. Cressman, Ross & Hofbauer, Josef & Riedel, Frank, 2005. "Stability of the Replicator Equation for a Single-Species with a Multi-Dimensional Continuous Trait Space," Bonn Econ Discussion Papers 12/2005, University of Bonn, Bonn Graduate School of Economics (BGSE).
    4. Hernán Darío Toro-Zapata & Gerard Olivar-Tost, 2018. "Mathematical Model For The Evolutionary Dynamic Of Innovation In City Public Transport Systems," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 7(2), pages 77-98.
    5. Kortessis, Nicholas & Chesson, Peter, 2021. "Character displacement in the presence of multiple trait differences: Evolution of the storage effect in germination and growth," Theoretical Population Biology, Elsevier, vol. 140(C), pages 54-66.
    6. Bagnoli, Franco & Guardiani, Carlo, 2005. "A model of sympatric speciation through assortative mating," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 534-574.
    7. Bhattacharyay, A. & Drossel, B., 2005. "Modeling coevolution and sympatric speciation of flowers and pollinators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 159-172.
    8. Cook, James N. & Oono, Y., 2010. "Competitive localization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1849-1860.
    9. Hoyle, Andrew & Bowers, Roger G., 2008. "Can possible evolutionary outcomes be determined directly from the population dynamics?," Theoretical Population Biology, Elsevier, vol. 74(4), pages 311-323.
    10. José Camacho Mateu & Matteo Sireci & Miguel A Muñoz, 2021. "Phenotypic-dependent variability and the emergence of tolerance in bacterial populations," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-28, September.
    11. Troost, T.A. & Kooi, B.W. & Kooijman, S.A.L.M., 2007. "Bifurcation analysis of ecological and evolutionary processes in ecosystems," Ecological Modelling, Elsevier, vol. 204(1), pages 253-268.
    12. Zu, Jian & Wang, Jinliang, 2013. "Adaptive evolution of attack ability promotes the evolutionary branching of predator species," Theoretical Population Biology, Elsevier, vol. 89(C), pages 12-23.
    13. Hernán Darío Toro-Zapata & Carlos Andrés Trujillo-Salazar & Fabio Dercole & Gerard Olivar-Tost, 2021. "Coffee Berry Borer (Hypothenemus hampei) and its role in the evolutionary diversification of the coffee market," Journal of Evolutionary Economics, Springer, vol. 31(3), pages 1029-1063, July.
    14. Débarre, Florence & Otto, Sarah P., 2016. "Evolutionary dynamics of a quantitative trait in a finite asexual population," Theoretical Population Biology, Elsevier, vol. 108(C), pages 75-88.
    15. Park, Junpyo & Jang, Bongsoo, 2021. "Structural stability of coexistence in evolutionary dynamics of cyclic competition," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    16. Johansson, Jacob & Ripa, Jörgen & Kuckländer, Nina, 2010. "The risk of competitive exclusion during evolutionary branching: Effects of resource variability, correlation and autocorrelation," Theoretical Population Biology, Elsevier, vol. 77(2), pages 95-104.
    17. Matessi, Carlo & Schneider, Kristan A., 2009. "Optimization under frequency-dependent selection," Theoretical Population Biology, Elsevier, vol. 76(1), pages 1-12.
    18. Gil Jorge Barros Henriques & Koichi Ito & Christoph Hauert & Michael Doebeli, 2021. "On the importance of evolving phenotype distributions on evolutionary diversification," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-21, February.
    19. Park, Junpyo, 2018. "Balancedness among competitions for biodiversity in the cyclic structured three species system," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 425-436.
    20. Park, Junpyo & Jang, Bongsoo, 2023. "Role of adaptive intraspecific competition on collective behavior in the rock–paper–scissors game," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:284:y:2016:i:c:p:66-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.