IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip1s0960077923008500.html
   My bibliography  Save this article

Evolutionary dynamics in the cyclic competition system of seven species: Common cascading dynamics in biodiversity

Author

Listed:
  • Yang, Ryoo Kyung
  • Park, Junpyo

Abstract

Complex systems in ecological science can be generally defined by either the number of different species or the structure among species having many relations, and understanding the given interaction structure is essential to predict the evolution of ecosystems. In this paper, we propose a multi-species system whose competition can occur cyclically. By exploiting the generalized system of cyclic competition among seven species, we explore how species biodiversity can appear when the generalized system is established by possessing the underlying mechanism of rock–paper–scissors (RPS) and rock–paper–scissors–lizard–spock (RPSLS) games. Through Monte-Carlo simulations, similar to the RPSLS system having the phase transition in biodiversity from five to one containing the three species survival in the middle, the model for seven species also exhibits similar cascading features in the biodiversity as mobility increases, validated by measuring the survival probability. We also found that not every cyclic structured system among seven species exhibits a common cascading feature in the transition in biodiversity. It is revealed that such a characteristic may require sufficient structures of RPS-like subgroups. Our findings may provide insights into the biodiversity of cyclically competing species and the link to predict biodiversity associated with the interaction structure in the microscopic framework.

Suggested Citation

  • Yang, Ryoo Kyung & Park, Junpyo, 2023. "Evolutionary dynamics in the cyclic competition system of seven species: Common cascading dynamics in biodiversity," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008500
    DOI: 10.1016/j.chaos.2023.113949
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923008500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Junpyo & Jang, Bongsoo, 2021. "Structural stability of coexistence in evolutionary dynamics of cyclic competition," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    2. Feng, Sha-Sha & Qiang, Cheng-Cang, 2013. "Self-organization of five species in a cyclic competition game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4675-4682.
    3. Park, Junpyo, 2022. "Effect of external migration on biodiversity in evolutionary dynamics of coupled cyclic competitions," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Szolnoki, Attila & Perc, Matjaž, 2023. "Oppressed species can form a winning pair in a multi-species ecosystem," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    5. Szolnoki, Attila & Chen, Xiaojie, 2020. "Strategy dependent learning activity in cyclic dominant systems," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    6. Kang, Yibin & Pan, Qiuhui & Wang, Xueting & He, Mingfeng, 2013. "A golden point rule in rock–paper–scissors–lizard–spock game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(11), pages 2652-2659.
    7. de Oliveira, Breno F. & Szolnoki, Attila, 2022. "Competition among alliances of different sizes," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Mohd, Mohd Hafiz & Park, Junpyo, 2021. "The interplay of rock-paper-scissors competition and environments mediates species coexistence and intriguing dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    9. Benjamin Kerr & Margaret A. Riley & Marcus W. Feldman & Brendan J. M. Bohannan, 2002. "Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors," Nature, Nature, vol. 418(6894), pages 171-174, July.
    10. Tobias Reichenbach & Mauro Mobilia & Erwin Frey, 2007. "Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games," Nature, Nature, vol. 448(7157), pages 1046-1049, August.
    11. Park, Junpyo, 2018. "Balancedness among competitions for biodiversity in the cyclic structured three species system," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 425-436.
    12. Park, Junpyo & Chen, Xiaojie & Szolnoki, Attila, 2023. "Competition of alliances in a cyclically dominant eight-species population," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    13. Mauro Mobilia & Alastair M. Rucklidge & Bartosz Szczesny, 2016. "The Influence of Mobility Rate on Spiral Waves in Spatial Rock-Paper-Scissors Games," Games, MDPI, vol. 7(3), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bazeia, D. & Bongestab, M. & de Oliveira, B.F. & Szolnoki, A., 2021. "Effects of a pestilent species on the stability of cyclically dominant species," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Park, Junpyo, 2022. "Effect of external migration on biodiversity in evolutionary dynamics of coupled cyclic competitions," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Huang, Wenting & Duan, Xiaofang & Qin, Lijuan & Park, Junpyo, 2023. "Fitness-based mobility enhances the maintenance of biodiversity in the spatial system of cyclic competition," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    4. de Oliveira, Breno F. & Szolnoki, Attila, 2022. "Competition among alliances of different sizes," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Park, Junpyo & Chen, Xiaojie & Szolnoki, Attila, 2023. "Competition of alliances in a cyclically dominant eight-species population," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    6. Park, Junpyo & Jang, Bongsoo, 2023. "Role of adaptive intraspecific competition on collective behavior in the rock–paper–scissors game," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    7. Szolnoki, Attila & Perc, Matjaž, 2023. "Oppressed species can form a winning pair in a multi-species ecosystem," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    8. Menezes, J. & Barbalho, R., 2023. "How multiple weak species jeopardise biodiversity in spatial rock–paper–scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    9. Park, Junpyo & Jang, Bongsoo, 2021. "Structural stability of coexistence in evolutionary dynamics of cyclic competition," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    10. Mohd, Mohd Hafiz & Park, Junpyo, 2021. "The interplay of rock-paper-scissors competition and environments mediates species coexistence and intriguing dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    11. Zhong, Linwu & Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Species coexistence in spatial cyclic game of five species," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    12. Zhang, Jing & Li, Zhao & Zhang, Jiqiang & Ma, Lin & Zheng, Guozhong & Chen, Li, 2023. "Emergence of oscillatory cooperation in a population with incomplete information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    13. Menezes, J. & Moura, B., 2022. "Pattern formation and coarsening dynamics in apparent competition models," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    14. Tenorio, M. & Rangel, E. & Menezes, J., 2022. "Adaptive movement strategy in rock-paper-scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    15. Stiadle, Thomas I. & Bayliss, Alvin & Volpert, Vladimir A., 2023. "Cyclic Ecological Systems with an Exceptional Species," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    16. Bazeia, D. & de Oliveira, B.F. & Silva, J.V.O. & Szolnoki, A., 2020. "Breaking unidirectional invasions jeopardizes biodiversity in spatial May-Leonard systems," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    17. Tian-Jiao Feng & Jie Mei & Rui-Wu Wang & Sabin Lessard & Yi Tao & Xiu-Deng Zheng, 2022. "Noise-Induced Quasi-Heteroclinic Cycle in a Rock–Paper–Scissors Game with Random Payoffs," Dynamic Games and Applications, Springer, vol. 12(4), pages 1280-1292, December.
    18. Bazeia, D. & Bongestab, M. & de Oliveira, B.F., 2022. "Influence of the neighborhood on cyclic models of biodiversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    19. Verma, Tina & Gupta, Arvind Kumar, 2021. "Evolutionary dynamics of rock-paper-scissors game in the patchy network with mutations," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    20. Park, Junpyo, 2018. "Balancedness among competitions for biodiversity in the cyclic structured three species system," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 425-436.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.