IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924008609.html
   My bibliography  Save this article

Does cooperation among conspecifics facilitate the coexistence of species?

Author

Listed:
  • Duan, Xiaofang
  • Ye, Jimin
  • Lu, Yikang
  • Du, Chunpeng
  • Jang, Bongsoo
  • Park, Junpyo

Abstract

In ecosystems, cooperative behavior is universal and can dramatically improve a species’ chances of survival. Nevertheless, the situations that can occur when different species with cooperative tendencies interact are veiled. To explore such a situation, in this paper, we investigate how cooperative behavior can affect biodiversity in the population system. Based on the spatial rock–paper–scissors (RPS) game, which incorporates the relative power between predator and prey species, we redefine the competition rate to facilitate cooperative behavior. Competition rates are modulated by the sensitivity parameter, which regulates alterations in competition rates stemming from variations in predator–prey population disparities. Through comprehensive numerical analysis, we have demonstrated compelling evidence confirming the nature of cooperative behavior in maintaining biodiversity. The sensitivity parameter acts as a double-edged sword; it hampers biodiversity when it falls below a certain level. Conversely, when it exceeds the threshold, it supports the maintenance of biodiversity. From snapshots and the coefficient analysis based on spatial autocorrelation, we found that empty sites are essential to promote coexistence as resource nodes. Compared with previous studies in spatial RPS games, our findings suggest that simple modification of a competition rate rather than exploiting cooperative games can realize the cooperative behavior of cyclically competing populations, and biodiversity is sensitively affected by cooperation.

Suggested Citation

  • Duan, Xiaofang & Ye, Jimin & Lu, Yikang & Du, Chunpeng & Jang, Bongsoo & Park, Junpyo, 2024. "Does cooperation among conspecifics facilitate the coexistence of species?," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008609
    DOI: 10.1016/j.chaos.2024.115308
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924008609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacopo Grilli & György Barabás & Matthew J. Michalska-Smith & Stefano Allesina, 2017. "Higher-order interactions stabilize dynamics in competitive network models," Nature, Nature, vol. 548(7666), pages 210-213, August.
    2. Alessandra F. Lütz & Annette Cazaubiel & Jeferson J. Arenzon, 2017. "Cyclic Competition and Percolation in Grouping Predator-Prey Populations," Games, MDPI, vol. 8(1), pages 1-9, February.
    3. Park, Junpyo & Jang, Bongsoo, 2023. "Role of adaptive intraspecific competition on collective behavior in the rock–paper–scissors game," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    4. Schreiber, Sebastian J. & Killingback, Timothy P., 2013. "Spatial heterogeneity promotes coexistence of rock–paper–scissors metacommunities," Theoretical Population Biology, Elsevier, vol. 86(C), pages 1-11.
    5. Zhu, Zhewen & Dong, Yuting & Lu, Yikang & Shi, Lei, 2021. "Information exchange promotes and jeopardizes cooperation on interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    6. de Oliveira, Breno F. & Szolnoki, Attila, 2022. "Competition among alliances of different sizes," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Yang, Ryoo Kyung & Park, Junpyo, 2023. "Evolutionary dynamics in the cyclic competition system of seven species: Common cascading dynamics in biodiversity," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    8. Huang, Wenting & Duan, Xiaofang & Qin, Lijuan & Park, Junpyo, 2023. "Fitness-based mobility enhances the maintenance of biodiversity in the spatial system of cyclic competition," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    9. Tobias Reichenbach & Mauro Mobilia & Erwin Frey, 2007. "Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games," Nature, Nature, vol. 448(7157), pages 1046-1049, August.
    10. Raw, S.N. & Mishra, P. & Kumar, R. & Thakur, S., 2017. "Complex behavior of prey-predator system exhibiting group defense: A mathematical modeling study," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 74-90.
    11. Park, Junpyo & Chen, Xiaojie & Szolnoki, Attila, 2023. "Competition of alliances in a cyclically dominant eight-species population," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Yikang & Dai, Hui & Tan, Huaiyu & Duan, Xiaofang & Shi, Lei & Park, Junpyo, 2025. "Enhancement of persistence in the rock-paper-scissors dynamics through higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 487(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Hui & Wang, Xiaoyue & Lu, Yikang & Hou, Yunxiang & Shi, Lei, 2024. "The effect of intraspecific cooperation in a three-species cyclic predator-prey model," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    2. Lu, Yikang & Dai, Hui & Tan, Huaiyu & Duan, Xiaofang & Shi, Lei & Park, Junpyo, 2025. "Enhancement of persistence in the rock-paper-scissors dynamics through higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 487(C).
    3. Yang, Ryoo Kyung & Park, Junpyo, 2023. "Evolutionary dynamics in the cyclic competition system of seven species: Common cascading dynamics in biodiversity," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Viswanathan, Karthik & Wilson, Ashly & Bhattacharyya, Sirshendu & Hens, Chittaranjan, 2024. "Ecological resilience in a circular world: Mutation and extinction in five-species ecosystems," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    5. Huang, Wenting & Duan, Xiaofang & Qin, Lijuan & Park, Junpyo, 2023. "Fitness-based mobility enhances the maintenance of biodiversity in the spatial system of cyclic competition," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    6. Menezes, J. & Barbalho, R., 2023. "How multiple weak species jeopardise biodiversity in spatial rock–paper–scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    7. Zhang, Zeyu & Bearup, Daniel & Guo, Guanming & Zhang, Helin & Liao, Jinbao, 2022. "Competition modes determine ecosystem stability in rock–paper–scissors games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    8. Kang, Ju & Zhang, Shijie & Niu, Yiyuan & Zhong, Fan & Wang, Xin, 2024. "Self-organized biodiversity in biotic resource systems through pairwise encounters," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    9. Szolnoki, Attila & Perc, Matjaž, 2023. "Oppressed species can form a winning pair in a multi-species ecosystem," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    10. Menezes, J. & Moura, B., 2022. "Pattern formation and coarsening dynamics in apparent competition models," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    11. Federico Malizia & Santiago Lamata-Otín & Mattia Frasca & Vito Latora & Jesús Gómez-Gardeñes, 2025. "Hyperedge overlap drives explosive transitions in systems with higher-order interactions," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    12. Kumar, Sachin & Kharbanda, Harsha, 2019. "Chaotic behavior of predator-prey model with group defense and non-linear harvesting in prey," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 19-28.
    13. Brandl, Florian & Brandt, Felix, 2024. "A natural adaptive process for collective decision-making," Theoretical Economics, Econometric Society, vol. 19(2), May.
    14. Ma, Weiyuan & Bao, Xionggai & Ma, Chenjun, 2024. "Controllability of higher-order networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    15. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. Mugnaine, Michele & Gabrick, Enrique C. & Protachevicz, Paulo R. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Batista, Antonio M. & Caldas, Iberê L. & Szezech Jr, José D. & V, 2022. "Control attenuation and temporary immunity in a cellular automata SEIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    17. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2024. "Supporting punishment via taxation in a structured population," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    18. Tenorio, M. & Rangel, E. & Menezes, J., 2022. "Adaptive movement strategy in rock-paper-scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    19. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    20. Gerrit Ansmann & Tobias Bollenbach, 2021. "Building clone-consistent ecosystem models," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.