IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v505y2025ics0304380025000870.html
   My bibliography  Save this article

Anatomy of the last days of a long transient spatial pattern: The ecological mechanism by which a traveling wave spatial patterns may end

Author

Listed:
  • Xu, Linhao
  • DeAngelis, Donald L.

Abstract

A spatially explicit simulation model was developed to assess the effectiveness of a biocontrol agent (a weevil) in consuming and thus limiting an invasive floating aquatic macrophyte (FAV) competing with native submersed aquatic vegetation (SAV). The three interacting species form a hierarchically intransitive network, specifically, rock-scissors-paper (weevil-FAV-SAV). Time delays in the system facilitate the emergence of a two-dimensional traveling wave involving the three species. In numerous simulations the traveling wave persists for long time periods despite stochastic disturbances in the form of added adult weevils. However, at a time that depends on the random number initiator, an apparently insignificant spatial deviation in a small set of pixels triggers an instability that grows rapidly until the striped pattern has been replaced by a chaotic-appearing pattern. The precise way in which this instability develops was studied through simulations at the resolution of daily time steps. The investigation showed that the time lags in the weevil life cycle and in spatial movement can lead to the instability and cause the original traveling wave to suddenly degenerate. Because the model simulates a parameterized ecological system, the results contribute to understanding how apparently stable ecological patterns, such as the striped traveling wave modeled here, can rapidly end as long transients.

Suggested Citation

  • Xu, Linhao & DeAngelis, Donald L., 2025. "Anatomy of the last days of a long transient spatial pattern: The ecological mechanism by which a traveling wave spatial patterns may end," Ecological Modelling, Elsevier, vol. 505(C).
  • Handle: RePEc:eee:ecomod:v:505:y:2025:i:c:s0304380025000870
    DOI: 10.1016/j.ecolmodel.2025.111101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380025000870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2025.111101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Tobias Reichenbach & Mauro Mobilia & Erwin Frey, 2007. "Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games," Nature, Nature, vol. 448(7157), pages 1046-1049, August.
    2. McCann, Michael J., 2016. "Evidence of alternative states in freshwater lakes: A spatially-explicit model of submerged and floating plants," Ecological Modelling, Elsevier, vol. 337(C), pages 298-309.
    3. Zhang, Zeyu & Bearup, Daniel & Guo, Guanming & Zhang, Helin & Liao, Jinbao, 2022. "Competition modes determine ecosystem stability in rock–paper–scissors games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    4. Vilas, Maria P. & Adams, Matthew P. & Oldham, Carolyn E. & Marti, Clelia L. & Hipsey, Matthew R., 2017. "Fragment dispersal and plant-induced dieback explain irregular ring-shaped pattern formation in a clonal submerged macrophyte," Ecological Modelling, Elsevier, vol. 363(C), pages 111-121.
    5. Xu, Linhao & Goode, Ashley B.C. & Tipping, Philip W. & Smith, Melissa C. & Gettys, Lyn A. & Knowles, Brittany K. & Pokorny, Eileen & Salinas, Luz & DeAngelis, Donald L., 2024. "Less is more: Less herbicide does more when biological control is present in Pontederia crassipes," Ecological Modelling, Elsevier, vol. 487(C).
    6. Benjamin Kerr & Margaret A. Riley & Marcus W. Feldman & Brendan J. M. Bohannan, 2002. "Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors," Nature, Nature, vol. 418(6894), pages 171-174, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menezes, J. & Moura, B., 2022. "Pattern formation and coarsening dynamics in apparent competition models," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Yang, Ryoo Kyung & Park, Junpyo, 2023. "Evolutionary dynamics in the cyclic competition system of seven species: Common cascading dynamics in biodiversity," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Huang, Wenting & Duan, Xiaofang & Qin, Lijuan & Park, Junpyo, 2023. "Fitness-based mobility enhances the maintenance of biodiversity in the spatial system of cyclic competition," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    4. Tenorio, M. & Rangel, E. & Menezes, J., 2022. "Adaptive movement strategy in rock-paper-scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Bazeia, D. & Bongestab, M. & de Oliveira, B.F. & Szolnoki, A., 2021. "Effects of a pestilent species on the stability of cyclically dominant species," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Menezes, J. & Barbalho, R., 2023. "How multiple weak species jeopardise biodiversity in spatial rock–paper–scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    7. Dai, Hui & Wang, Xiaoyue & Lu, Yikang & Hou, Yunxiang & Shi, Lei, 2024. "The effect of intraspecific cooperation in a three-species cyclic predator-prey model," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    8. repec:plo:pbio00:2001457 is not listed on IDEAS
    9. Mohd, Mohd Hafiz & Park, Junpyo, 2021. "The interplay of rock-paper-scissors competition and environments mediates species coexistence and intriguing dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    10. Zhong, Linwu & Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Species coexistence in spatial cyclic game of five species," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    11. Bazeia, D. & Bongestab, M. & de Oliveira, B.F., 2022. "Influence of the neighborhood on cyclic models of biodiversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    12. Park, Junpyo, 2022. "Effect of external migration on biodiversity in evolutionary dynamics of coupled cyclic competitions," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    13. Verma, Tina & Gupta, Arvind Kumar, 2021. "Evolutionary dynamics of rock-paper-scissors game in the patchy network with mutations," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    14. Zhang, Jing & Li, Zhao & Zhang, Jiqiang & Ma, Lin & Zheng, Guozhong & Chen, Li, 2023. "Emergence of oscillatory cooperation in a population with incomplete information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    15. Zhang, Libin & Yao, Zijun & Wu, Bin, 2021. "Calculating biodiversity under stochastic evolutionary dynamics," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    16. Zhang, Zeyu & Bearup, Daniel & Guo, Guanming & Zhang, Helin & Liao, Jinbao, 2022. "Competition modes determine ecosystem stability in rock–paper–scissors games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    17. Kayacan, O. & Middendorf, M., 2021. "Population dynamics for systems with cyclic predator–prey relations and pheromone dependent movement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    18. Cliff, Dave, 2025. "On long-term species coexistence in five-species evolutionary spatial cyclic games with ablated and non-ablated dominance networks," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    19. Avelino, P.P. & de Oliveira, B.F. & Trintin, R.S., 2022. "Parity effects in rock-paper-scissors type models with a number of species NS≤12," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    20. Choi, Junhyeok & Park, Junpyo & Jang, Bongsoo, 2024. "Exploring the interplay of biodiversity and mutation in cyclic competition systems," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    21. Duan, Xiaofang & Ye, Jimin & Lu, Yikang & Du, Chunpeng & Jang, Bongsoo & Park, Junpyo, 2024. "Does cooperation among conspecifics facilitate the coexistence of species?," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:505:y:2025:i:c:s0304380025000870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.