IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v151y2021ics0960077921006093.html
   My bibliography  Save this article

Effects of a pestilent species on the stability of cyclically dominant species

Author

Listed:
  • Bazeia, D.
  • Bongestab, M.
  • de Oliveira, B.F.
  • Szolnoki, A.

Abstract

Cyclic dominance is frequently believed to be a mechanism that maintains diversity of competing species. But this delicate balance could also be fragile if some of the members is weakened because an extinction of a species will involve the annihilation of its predator hence leaving only a single species alive. To check this expectation we here introduce a fourth species which chases exclusively a single member of the basic model composed by three cyclically dominant species. Interestingly, the coexistence is not necessarily broken and we have detected three consecutive phase transitions as we vary only the invasion strength of the fourth pestilent species. The resulting phases are analyzed by different techniques including the study of the Hamming distance density profiles. Some of our observations strengthen previous findings about cyclically dominant system, but they also offer new revelations and counter-intuitive phenomenon, like supporting pestilent species may result in its extinction, hence enriching our understanding about these very simple but still surprisingly complex systems.

Suggested Citation

  • Bazeia, D. & Bongestab, M. & de Oliveira, B.F. & Szolnoki, A., 2021. "Effects of a pestilent species on the stability of cyclically dominant species," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921006093
    DOI: 10.1016/j.chaos.2021.111255
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921006093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin C. Kirkup & Margaret A. Riley, 2004. "Antibiotic-mediated antagonism leads to a bacterial game of rock–paper–scissors in vivo," Nature, Nature, vol. 428(6981), pages 412-414, March.
    2. Filippo Palombi & Stefano Ferriani & Simona Toti, 2020. "Coevolutionary dynamics of a variant of the cyclic Lotka–Volterra model with three-agent interactions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 93(10), pages 1-18, October.
    3. Benjamin Kerr & Margaret A. Riley & Marcus W. Feldman & Brendan J. M. Bohannan, 2002. "Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors," Nature, Nature, vol. 418(6894), pages 171-174, July.
    4. Bazeia, D. & de Oliveira, B.F. & Silva, J.V.O. & Szolnoki, A., 2020. "Breaking unidirectional invasions jeopardizes biodiversity in spatial May-Leonard systems," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Tobias Reichenbach & Mauro Mobilia & Erwin Frey, 2007. "Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games," Nature, Nature, vol. 448(7157), pages 1046-1049, August.
    6. Jonathan M. Levine & Jordi Bascompte & Peter B. Adler & Stefano Allesina, 2017. "Beyond pairwise mechanisms of species coexistence in complex communities," Nature, Nature, vol. 546(7656), pages 56-64, June.
    7. Catherine A. Lozupone & Jesse I. Stombaugh & Jeffrey I. Gordon & Janet K. Jansson & Rob Knight, 2012. "Diversity, stability and resilience of the human gut microbiota," Nature, Nature, vol. 489(7415), pages 220-230, September.
    8. Szolnoki, Attila & Chen, Xiaojie, 2020. "Strategy dependent learning activity in cyclic dominant systems," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    9. Kang, Yibin & Pan, Qiuhui & Wang, Xueting & He, Mingfeng, 2013. "A golden point rule in rock–paper–scissors–lizard–spock game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(11), pages 2652-2659.
    10. Takashi Nagatani & Genki Ichinose, 2020. "Diffusively-Coupled Rock-Paper-Scissors Game with Mutation in Scale-Free Hierarchical Networks," Complexity, Hindawi, vol. 2020, pages 1-8, October.
    11. Mauro Mobilia & Alastair M. Rucklidge & Bartosz Szczesny, 2016. "The Influence of Mobility Rate on Spiral Waves in Spatial Rock-Paper-Scissors Games," Games, MDPI, vol. 7(3), pages 1-12, September.
    12. Frey, Erwin, 2010. "Evolutionary game theory: Theoretical concepts and applications to microbial communities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(20), pages 4265-4298.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Ryoo Kyung & Park, Junpyo, 2023. "Evolutionary dynamics in the cyclic competition system of seven species: Common cascading dynamics in biodiversity," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. de Oliveira, Breno F. & Szolnoki, Attila, 2022. "Competition among alliances of different sizes," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Bazeia, D. & Bongestab, M. & de Oliveira, B.F., 2022. "Influence of the neighborhood on cyclic models of biodiversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    4. Park, Junpyo & Chen, Xiaojie & Szolnoki, Attila, 2023. "Competition of alliances in a cyclically dominant eight-species population," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    5. Szolnoki, Attila & Perc, Matjaž, 2023. "Oppressed species can form a winning pair in a multi-species ecosystem," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    6. Menezes, J. & Moura, B., 2022. "Pattern formation and coarsening dynamics in apparent competition models," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Huang, Wenting & Duan, Xiaofang & Qin, Lijuan & Park, Junpyo, 2023. "Fitness-based mobility enhances the maintenance of biodiversity in the spatial system of cyclic competition," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    8. Tenorio, M. & Rangel, E. & Menezes, J., 2022. "Adaptive movement strategy in rock-paper-scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Menezes, J. & Barbalho, R., 2023. "How multiple weak species jeopardise biodiversity in spatial rock–paper–scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    10. Bazeia, D. & de Oliveira, B.F. & Silva, J.V.O. & Szolnoki, A., 2020. "Breaking unidirectional invasions jeopardizes biodiversity in spatial May-Leonard systems," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. Tian-Jiao Feng & Jie Mei & Rui-Wu Wang & Sabin Lessard & Yi Tao & Xiu-Deng Zheng, 2022. "Noise-Induced Quasi-Heteroclinic Cycle in a Rock–Paper–Scissors Game with Random Payoffs," Dynamic Games and Applications, Springer, vol. 12(4), pages 1280-1292, December.
    12. Park, Junpyo, 2022. "Effect of external migration on biodiversity in evolutionary dynamics of coupled cyclic competitions," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    13. Verma, Tina & Gupta, Arvind Kumar, 2021. "Evolutionary dynamics of rock-paper-scissors game in the patchy network with mutations," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    14. Zhang, Jing & Li, Zhao & Zhang, Jiqiang & Ma, Lin & Zheng, Guozhong & Chen, Li, 2023. "Emergence of oscillatory cooperation in a population with incomplete information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    15. Wang, Z. & Bayliss, A. & Volpert, V.A., 2024. "Competing alliances in a four-species cyclic ecosystem," Applied Mathematics and Computation, Elsevier, vol. 464(C).
    16. Zhang, Zeyu & Bearup, Daniel & Guo, Guanming & Zhang, Helin & Liao, Jinbao, 2022. "Competition modes determine ecosystem stability in rock–paper–scissors games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    17. Stiadle, Thomas I. & Bayliss, Alvin & Volpert, Vladimir A., 2023. "Cyclic Ecological Systems with an Exceptional Species," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    18. Mohd, Mohd Hafiz & Park, Junpyo, 2021. "The interplay of rock-paper-scissors competition and environments mediates species coexistence and intriguing dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    19. Erik Brockbank & Edward Vul, 2021. "Formalizing Opponent Modeling with the Rock, Paper, Scissors Game," Games, MDPI, vol. 12(3), pages 1-20, September.
    20. Zhong, Linwu & Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Species coexistence in spatial cyclic game of five species," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921006093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.