IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v12y2022i4d10.1007_s13235-021-00414-y.html
   My bibliography  Save this article

Noise-Induced Quasi-Heteroclinic Cycle in a Rock–Paper–Scissors Game with Random Payoffs

Author

Listed:
  • Tian-Jiao Feng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jie Mei

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Rui-Wu Wang

    (Northwestern Polytechnical University)

  • Sabin Lessard

    (University of Montreal)

  • Yi Tao

    (Chinese Academy of Sciences
    Northwestern Polytechnical University
    Yunnan University)

  • Xiu-Deng Zheng

    (Chinese Academy of Sciences)

Abstract

The rock–paper–scissors game is one of the main theoretical models in evolutionary game theory and has been used successfully to explain some observed phenomena in biology, economics and social science. In order to explore the influence of environmental noise on cyclic dominance in the rock–paper–scissors game, stochastic stability in a continuous-time dynamics of the game with random payoffs in pairwise interactions is investigated by using the stochastic stability theory of Itô’s stochastic differential equations. After deducing a stochastic replicator equation for the strategy frequencies in a symmetric version of the game, stochastic stability conditions for constant equilibrium states are obtained and stochastic simulations of the global dynamics are performed. The main results are that (1) none of the fixation states of the system can be stochastically stable; and (2) an increase in the noise level (or stochastic fluctuation intensity) can result in the loss of stochastic stability of the constant interior equilibrium. More importantly, the simulation results not only match the theoretical predictions but also show the appearance of a noise-induced quasi-heteroclinic cycle when the constant interior equilibrium loses its stochastic stability as the noise level increases.

Suggested Citation

  • Tian-Jiao Feng & Jie Mei & Rui-Wu Wang & Sabin Lessard & Yi Tao & Xiu-Deng Zheng, 2022. "Noise-Induced Quasi-Heteroclinic Cycle in a Rock–Paper–Scissors Game with Random Payoffs," Dynamic Games and Applications, Springer, vol. 12(4), pages 1280-1292, December.
  • Handle: RePEc:spr:dyngam:v:12:y:2022:i:4:d:10.1007_s13235-021-00414-y
    DOI: 10.1007/s13235-021-00414-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-021-00414-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-021-00414-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin C. Kirkup & Margaret A. Riley, 2004. "Antibiotic-mediated antagonism leads to a bacterial game of rock–paper–scissors in vivo," Nature, Nature, vol. 428(6981), pages 412-414, March.
    2. Fudenberg, D. & Harris, C., 1992. "Evolutionary dynamics with aggregate shocks," Journal of Economic Theory, Elsevier, vol. 57(2), pages 420-441, August.
    3. Helbing, Dirk, 1992. "Interrelations between stochastic equations for systems with pair interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 181(1), pages 29-52.
    4. Hommes, Cars H. & Ochea, Marius I., 2012. "Multiple equilibria and limit cycles in evolutionary games with Logit Dynamics," Games and Economic Behavior, Elsevier, vol. 74(1), pages 434-441.
    5. Tobias Reichenbach & Mauro Mobilia & Erwin Frey, 2007. "Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games," Nature, Nature, vol. 448(7157), pages 1046-1049, August.
    6. Michael B. Elowitz & Stanislas Leibler, 2000. "A synthetic oscillatory network of transcriptional regulators," Nature, Nature, vol. 403(6767), pages 335-338, January.
    7. Andrew R. Tilman & Joshua B. Plotkin & Erol Akçay, 2020. "Evolutionary games with environmental feedbacks," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    8. Mauro Mobilia & Alastair M. Rucklidge & Bartosz Szczesny, 2016. "The Influence of Mobility Rate on Spiral Waves in Spatial Rock-Paper-Scissors Games," Games, MDPI, vol. 7(3), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bazeia, D. & Bongestab, M. & de Oliveira, B.F. & Szolnoki, A., 2021. "Effects of a pestilent species on the stability of cyclically dominant species," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Menezes, J. & Moura, B., 2022. "Pattern formation and coarsening dynamics in apparent competition models," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Yang, Ryoo Kyung & Park, Junpyo, 2023. "Evolutionary dynamics in the cyclic competition system of seven species: Common cascading dynamics in biodiversity," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Menezes, J. & Barbalho, R., 2023. "How multiple weak species jeopardise biodiversity in spatial rock–paper–scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Thomas Graham & Maria Kleshnina & Jerzy A. Filar, 2023. "Where Do Mistakes Lead? A Survey of Games with Incompetent Players," Dynamic Games and Applications, Springer, vol. 13(1), pages 231-264, March.
    6. Cheng, Haihui & Meng, Xinzhu & Hayat, Tasawar & Hobiny, Aatef, 2023. "Multistability and bifurcation analysis for a three-strategy game system with public goods feedback and discrete delays," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    7. Szolnoki, Attila & Perc, Matjaž, 2023. "Oppressed species can form a winning pair in a multi-species ecosystem," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    8. Huang, Wenting & Duan, Xiaofang & Qin, Lijuan & Park, Junpyo, 2023. "Fitness-based mobility enhances the maintenance of biodiversity in the spatial system of cyclic competition," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    9. Tenorio, M. & Rangel, E. & Menezes, J., 2022. "Adaptive movement strategy in rock-paper-scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. de Oliveira, Breno F. & Szolnoki, Attila, 2022. "Competition among alliances of different sizes," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    11. Bazeia, D. & Bongestab, M. & de Oliveira, B.F., 2022. "Influence of the neighborhood on cyclic models of biodiversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    12. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    13. Siegfried Berninghaus & Hans Haller & Alexander Outkin, 2006. "Neural networks and contagion," Revue d'économie industrielle, De Boeck Université, vol. 0(2), pages 11-11.
    14. Zhang, Boyu & Hofbauer, Josef, 2016. "Quantal response methods for equilibrium selection in 2×2 coordination games," Games and Economic Behavior, Elsevier, vol. 97(C), pages 19-31.
    15. Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Migration based on environment comparison promotes cooperation in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    16. Basov, S., 2001. "An Evolutionary Model of Reciprocity," Department of Economics - Working Papers Series 812, The University of Melbourne.
    17. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    18. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    19. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    20. Bottani, Samuel & Grammaticos, Basile, 2008. "A simple model of genetic oscillations through regulated degradation," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1468-1482.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:12:y:2022:i:4:d:10.1007_s13235-021-00414-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.