IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v204y2007i1p253-268.html
   My bibliography  Save this article

Bifurcation analysis of ecological and evolutionary processes in ecosystems

Author

Listed:
  • Troost, T.A.
  • Kooi, B.W.
  • Kooijman, S.A.L.M.

Abstract

Bifurcation theory is commonly used to study the dynamical behaviour of ecosystems. It involves the analysis of points in the parameter space where the stability of the system changes qualitatively. Generally, such changes are related only to changes in environmental parameters, while the organism’s trait values are assumed to be constant. In reality, however, these trait values also change, though on a longer (evolutionary) time scale. On an ecological time scale, such evolutionary changes often come down to mutants invading a resident population. Points in the trait space where invasibility changes correspond to transcritical bifurcations. Therefore, bifurcation theory may also be used to study the evolutionary dynamics of ecosystems. First, the bifurctation approach is explained by analyzing a simple and well known Lotka–Volterra competition model where the competition coefficients and the carrying capacity are trait-dependent. However, the bifurcation approach is especially suitable for the analysis of more complex models. Therefore, the advantages and differences with the Adaptive Dynamics (AD) approach are discussed in more detail by means of the analysis of a more realistic and complex ecosystem model consisting of mixotrophic organisms.

Suggested Citation

  • Troost, T.A. & Kooi, B.W. & Kooijman, S.A.L.M., 2007. "Bifurcation analysis of ecological and evolutionary processes in ecosystems," Ecological Modelling, Elsevier, vol. 204(1), pages 253-268.
  • Handle: RePEc:eee:ecomod:v:204:y:2007:i:1:p:253-268
    DOI: 10.1016/j.ecolmodel.2007.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438000700018X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ulf Dieckmann & Michael Doebeli, 1999. "On the origin of species by sympatric speciation," Nature, Nature, vol. 400(6742), pages 354-357, July.
    2. U. Dieckmann & M. Doebeli, 1999. "On the Origin of Species by Sympatric Speciation," Working Papers ir99013, International Institute for Applied Systems Analysis.
    3. M. Doebeli & U. Dieckmann, 2000. "Evolutionary Branching and Sympatric Speciation Caused by Different Types of Ecological Interactions," Working Papers ir00040, International Institute for Applied Systems Analysis.
    4. U. Dieckmann & R. Law, 1996. "The Dynamical Theory of Coevolution: A Derivation from Stochastic Ecological Processes," Working Papers wp96001, International Institute for Applied Systems Analysis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Kleshnina & Sabrina Streipert & Joel S. Brown & Kateřina Staňková, 2023. "Game Theory for Managing Evolving Systems: Challenges and Opportunities of Including Vector-Valued Strategies and Life-History Traits," Dynamic Games and Applications, Springer, vol. 13(4), pages 1130-1155, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Camacho Mateu & Matteo Sireci & Miguel A Muñoz, 2021. "Phenotypic-dependent variability and the emergence of tolerance in bacterial populations," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-28, September.
    2. Zu, Jian & Wang, Jinliang, 2013. "Adaptive evolution of attack ability promotes the evolutionary branching of predator species," Theoretical Population Biology, Elsevier, vol. 89(C), pages 12-23.
    3. Nurmi, Tuomas & Parvinen, Kalle, 2008. "On the evolution of specialization with a mechanistic underpinning in structured metapopulations," Theoretical Population Biology, Elsevier, vol. 73(2), pages 222-243.
    4. Débarre, Florence & Otto, Sarah P., 2016. "Evolutionary dynamics of a quantitative trait in a finite asexual population," Theoretical Population Biology, Elsevier, vol. 108(C), pages 75-88.
    5. Åke Brännström & Jacob Johansson & Niels Von Festenberg, 2013. "The Hitchhiker’s Guide to Adaptive Dynamics," Games, MDPI, vol. 4(3), pages 1-25, June.
    6. Boettiger, Carl & Dushoff, Jonathan & Weitz, Joshua S., 2010. "Fluctuation domains in adaptive evolution," Theoretical Population Biology, Elsevier, vol. 77(1), pages 6-13.
    7. Svardal, Hannes & Rueffler, Claus & Hermisson, Joachim, 2015. "A general condition for adaptive genetic polymorphism in temporally and spatially heterogeneous environments," Theoretical Population Biology, Elsevier, vol. 99(C), pages 76-97.
    8. Champagnat, Nicolas, 2006. "A microscopic interpretation for adaptive dynamics trait substitution sequence models," Stochastic Processes and their Applications, Elsevier, vol. 116(8), pages 1127-1160, August.
    9. E. Kisdi & F.J.A. Jacobs & S.A.H. Geritz, 2000. "Red Queen Evolution by Cycles of Evolutionary Branching and Extinction," Working Papers ir00030, International Institute for Applied Systems Analysis.
    10. Matessi, Carlo & Schneider, Kristan A., 2009. "Optimization under frequency-dependent selection," Theoretical Population Biology, Elsevier, vol. 76(1), pages 1-12.
    11. Bagnoli, Franco & Guardiani, Carlo, 2005. "A model of sympatric speciation through assortative mating," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 534-574.
    12. Bhattacharyay, A. & Drossel, B., 2005. "Modeling coevolution and sympatric speciation of flowers and pollinators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 159-172.
    13. Cook, James N. & Oono, Y., 2010. "Competitive localization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1849-1860.
    14. Jonathan Newton, 2017. "The preferences of Homo Moralis are unstable under evolving assortativity," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(2), pages 583-589, May.
    15. Cressman, Ross & Hofbauer, Josef & Riedel, Frank, 2005. "Stability of the Replicator Equation for a Single-Species with a Multi-Dimensional Continuous Trait Space," Bonn Econ Discussion Papers 12/2005, University of Bonn, Bonn Graduate School of Economics (BGSE).
    16. Alexandros Rigos & Heinrich H. Nax, 2015. "Assortativity evolving from social dilemmas," Discussion Papers in Economics 15/19, Division of Economics, School of Business, University of Leicester.
    17. Chaianunporn, Thotsapol & Hovestadt, Thomas, 2012. "Concurrent evolution of random dispersal and habitat niche width in host-parasitoid systems," Ecological Modelling, Elsevier, vol. 247(C), pages 241-250.
    18. Michael B. Doud & Animesh Gupta & Victor Li & Sarah J. Medina & Caesar A. Fuente & Justin R. Meyer, 2024. "Competition-driven eco-evolutionary feedback reshapes bacteriophage lambda’s fitness landscape and enables speciation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Costa, Carolina L.N. & Marquitti, Flavia M.D. & Perez, S. Ivan & Schneider, David M. & Ramos, Marlon F. & de Aguiar, Marcus A.M., 2018. "Registering the evolutionary history in individual-based models of speciation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 1-14.
    20. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:204:y:2007:i:1:p:253-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.