IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i2p282-292.html
   My bibliography  Save this article

Response of Vitis vinifera cv. 'Tempranillo' to partial rootzone drying in the field: Water relations, growth, yield and fruit and wine quality

Author

Listed:
  • Intrigliolo, D.S.
  • Castel, J.R.

Abstract

This paper reports the effects of irrigation amount and partial rootzone drying (PRD) on water relations, growth, yield and wine quality of Vitis vinifera cv. 'Tempranillo' during two consecutive years in a commercial vineyard with a deep, light-clay soil located in Requena, Valencia, Spain. Partial rootzone drying applied at two amounts (100% and 50% of the estimated crop evapotranspiration), was compared to conventional drip irrigation, and also to rainfed vines. Results showed that the effects of irrigation amount on yield and wine quality were different between years. In 2003 with low yield values (around 6.3 t ha-1) irrigation did neither affect grape production nor wine quality. However, in the following year, with much higher general yield (17 t ha-1), the high irrigation dose increased yield by 30% compared to rainfed vines and it also increased must total soluble solids and wine alcohol content. In both seasons, PRD did not significantly affect physiological parameters, nor growth, yield or fruit and wine quality, when compared to the same amount of water applied by conventional drip irrigation. Overall these results suggest that, under our experimental conditions, it was the irrigation amount rather than the system of application what affected vine performance, indicating the difficulties of successfully employing the PRD type of irrigation with a drip system in heavy and deep soils.

Suggested Citation

  • Intrigliolo, D.S. & Castel, J.R., 2009. "Response of Vitis vinifera cv. 'Tempranillo' to partial rootzone drying in the field: Water relations, growth, yield and fruit and wine quality," Agricultural Water Management, Elsevier, vol. 96(2), pages 282-292, February.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:2:p:282-292
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00188-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Taisheng & Kang, Shaozhong & Zhang, Jianhua & Li, Fusheng & Yan, Boyuan, 2008. "Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 95(6), pages 659-668, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Egea, Gregorio & González-Real, María M. & Baille, Alain & Nortes, Pedro A. & Sánchez-Bel, Paloma & Domingo, Rafael, 2009. "The effects of contrasted deficit irrigation strategies on the fruit growth and kernel quality of mature almond trees," Agricultural Water Management, Elsevier, vol. 96(11), pages 1605-1614, November.
    2. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    3. Pascual Romero Azorín & José García García, 2020. "The Productive, Economic, and Social Efficiency of Vineyards Using Combined Drought-Tolerant Rootstocks and Efficient Low Water Volume Deficit Irrigation Techniques under Mediterranean Semiarid Condit," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    4. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    5. Reinhard NOLZ & Willibald LOISKANDL & Gerhard KAMMERER & Margarita L. HIMMELBAUER, 2016. "Survey of soil water distribution in a vineyard and implications for subsurface drip irrigation control," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(4), pages 250-258.
    6. Kizildeniz, T. & Pascual, I. & Irigoyen, J.J & Morales, F., 2018. "Using fruit-bearing cuttings of grapevine and temperature gradient greenhouses to evaluate effects of climate change (elevated CO2 and temperature, and water deficit) on the cv. red and white Temprani," Agricultural Water Management, Elsevier, vol. 202(C), pages 299-310.
    7. Trigo-Córdoba, Emiliano & Bouzas-Cid, Yolanda & Orriols-Fernández, Ignacio & Mirás-Avalos, José Manuel, 2015. "Effects of deficit irrigation on the performance of grapevine (Vitis vinifera L.) cv. ‘Godello’ and ‘Treixadura’ in Ribeiro, NW Spain," Agricultural Water Management, Elsevier, vol. 161(C), pages 20-30.
    8. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    9. Romero, Pascual & Muñoz, Rocío Gil & Fernández-Fernández, J.I. & del Amor, Francisco M. & Martínez-Cutillas, Adrián & García-García, José, 2015. "Improvement of yield and grape and wine composition in field-grown Monastrell grapevines by partial root zone irrigation, in comparison with regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 149(C), pages 55-73.
    10. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    11. da Silva, Jefferson Rangel & Rodrigues, Weverton Pereira & Ferreira, Luciene Souza & Bernado, Wallace de Paula & Paixão, Jéssica Sousa & Patterson, Angelica Eloisa & Ruas, Katherine Fraga & Viana, Lea, 2018. "Deficit irrigation and transparent plastic covers can save water and improve grapevine cultivation in the tropics," Agricultural Water Management, Elsevier, vol. 202(C), pages 66-80.
    12. Conesa, María R. & Falagán, Natalia & de la Rosa, José M. & Aguayo, Encarna & Domingo, Rafael & Pastor, Alejandro Pérez, 2016. "Post-veraison deficit irrigation regimes enhance berry coloration and health-promoting bioactive compounds in ‘Crimson Seedless’ table grapes," Agricultural Water Management, Elsevier, vol. 163(C), pages 9-18.
    13. Bassoi, Luís Henrique & de Melo Chaves, Agnaldo Rodrigues & Teixeira, Rafael Pombo, 2021. "Responses of 'Syrah' grapevine to deficit irrigation in the Brazilian semi-arid region," Agricultural Water Management, Elsevier, vol. 258(C).
    14. Lizama, V. & Pérez-Álvarez, E.P. & Intrigliolo, D.S. & Chirivella, C. & Álvarez, I. & García-Esparza, M.J., 2021. "Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: II. Wine, skins, seeds, and grape aromatic composition," Agricultural Water Management, Elsevier, vol. 256(C).
    15. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    16. Kizildeniz, T. & Mekni, I. & Santesteban, H. & Pascual, I. & Morales, F. & Irigoyen, J.J., 2015. "Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars," Agricultural Water Management, Elsevier, vol. 159(C), pages 155-164.
    17. Egea, Gregorio & Nortes, Pedro A. & González-Real, María M. & Baille, Alain & Domingo, Rafael, 2010. "Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 97(1), pages 171-181, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xin & Bornø, Marie Louise & Wei, Zhenhua & Liu, Fulai, 2021. "Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels," Agricultural Water Management, Elsevier, vol. 254(C).
    2. Jingwei Wang & Yuan Li & Wenquan Niu, 2020. "Deficit Alternate Drip Irrigation Increased Root-Soil-Plant Interaction, Tomato Yield, and Quality," IJERPH, MDPI, vol. 17(3), pages 1-18, January.
    3. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    4. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    5. Li, Fusheng & Wei, Caihui & Zhang, Fucang & Zhang, Jianhua & Nong, Mengling & Kang, Shaozhong, 2010. "Water-use efficiency and physiological responses of maize under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 97(8), pages 1156-1164, August.
    6. Guizani, Monia & Dabbou, Samia & Maatallah, Samira & Montevecchi, Giuseppe & Hajlaoui, Hichem & Rezig, Mourad & Helal, Ahmed Noureddine & Kilani-Jaziri, Soumaya, 2019. "Physiological responses and fruit quality of four peach cultivars under sustained and cyclic deficit irrigation in center-west of Tunisia," Agricultural Water Management, Elsevier, vol. 217(C), pages 81-97.
    7. Shu, Liang-Zuo & Liu, Rui & Min, Wei & Wang, Yao-sheng & Hong-mei, Yu & Zhu, Peng-fei & Zhu, Ji-rong, 2020. "Regulation of soil water threshold on tomato plant growth and fruit quality under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 238(C).
    8. Li, Xinxin & Liu, Hongguang & Li, Jing & He, Xinlin & Gong, Ping & Lin, En & Li, Kaiming & Li, Ling & Binley, Andrew, 2020. "Experimental study and multi–objective optimization for drip irrigation of grapes in arid areas of northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    9. Yao, Zhenzhu & Hou, Xuemin & Wang, Yu & Du, Taisheng, 2023. "Regulation of tomato yield and fruit quality by alternate partial root-zone irrigation strongly depends on truss positions," Agricultural Water Management, Elsevier, vol. 282(C).
    10. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    11. Yang, Lijuan & Qu, Hui & Zhang, Yulong & Li, Fusheng, 2012. "Effects of partial root-zone irrigation on physiology, fruit yield and quality and water use efficiency of tomato under different calcium levels," Agricultural Water Management, Elsevier, vol. 104(C), pages 89-94.
    12. Li, Wenjia & Gao, Yanming & Tian, Yongqiang & Li, Jianshe, 2022. "Double-root-grafting enhances irrigation water efficiency and reduces the adverse effects of saline water on tomato yields under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 264(C).
    13. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    14. Egea, Gregorio & González-Real, María M. & Baille, Alain & Nortes, Pedro A. & Sánchez-Bel, Paloma & Domingo, Rafael, 2009. "The effects of contrasted deficit irrigation strategies on the fruit growth and kernel quality of mature almond trees," Agricultural Water Management, Elsevier, vol. 96(11), pages 1605-1614, November.
    15. Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).
    16. Liao, Renkuan & Zhang, Shirui & Zhang, Xin & Wang, Mingfei & Wu, Huarui & Zhangzhong, Lili, 2021. "Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept," Agricultural Water Management, Elsevier, vol. 245(C).
    17. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    18. Parvizi, Hossein & Sepaskhah, Ali Reza, 2015. "Effect of drip irrigation and fertilizer regimes on fruit quality of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 156(C), pages 70-78.
    19. Wang, Chenxia & Gu, Feng & Chen, Jinliang & Yang, Hui & Jiang, Jingjing & Du, Taisheng & Zhang, Jianhua, 2015. "Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies," Agricultural Water Management, Elsevier, vol. 161(C), pages 9-19.
    20. Tang, Li-Song & Li, Yan & Zhang, Jianhua, 2010. "Partial rootzone irrigation increases water use efficiency, maintains yield and enhances economic profit of cotton in arid area," Agricultural Water Management, Elsevier, vol. 97(10), pages 1527-1533, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:2:p:282-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.