IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i1p171-181.html
   My bibliography  Save this article

Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes

Author

Listed:
  • Egea, Gregorio
  • Nortes, Pedro A.
  • González-Real, María M.
  • Baille, Alain
  • Domingo, Rafael

Abstract

We investigated the long-term effects of different deficit irrigation (DI) options on tree growth, shoot and leaf attributes, yield determinants and water productivity of almond trees (Prunus dulcis, cv. Marta) grown in a semiarid climate in SE Spain. Three partial root-zone drying (PRD) irrigation treatments encompassing a wide range of water restriction (30%, 50% and 70% of full crop requirements, ETc) and a regulated deficit irrigation treatment (RDI, at 50% ETc during kernel-filling) were compared over three consecutive growth seasons (2004-2006) to full irrigation (FI). The results showed that all deficit irrigation treatments have a negative impact on trunk growth parameters. The magnitude of the reduction in trunk growth rate was strongly correlated through a linear relationship with the annual volume of water applied (WA) per tree. Similarly, a significant relationship was found between WA and the increase in crown volume. In contrast, leaf-related attributes and some yield-related parameters (e.g., kernel fraction) were not significantly affected by the irrigation treatments. Except in PRD70, individual kernel weight was significantly reduced in the deficit irrigated treatments. Kernel yield, expressed in percent of the maximum yield observed in the FI treatment, showed a linear decrease with decreasing WA and a slope of 0.43, which implies that a 1% decrease in water application would lead to a reduction of 0.43% in yield. Water productivity increased drastically with the reduction of water application, reaching 123% in the case of PRD30. Overall, our results demonstrate the prevalence of direct and strong links between the intensity of the water restriction under PRD - i.e., the total water supply during the growing season - and the main parameters related to tree growth, yield and water productivity. Noteworthy, the treatments that received similar annual water volumes under contrasted deficit irrigation strategies (i.e., PRD70 and RDI) presented a similar tree performance.

Suggested Citation

  • Egea, Gregorio & Nortes, Pedro A. & González-Real, María M. & Baille, Alain & Domingo, Rafael, 2010. "Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 97(1), pages 171-181, January.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:1:p:171-181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00273-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egea, Gregorio & González-Real, María M. & Baille, Alain & Nortes, Pedro A. & Sánchez-Bel, Paloma & Domingo, Rafael, 2009. "The effects of contrasted deficit irrigation strategies on the fruit growth and kernel quality of mature almond trees," Agricultural Water Management, Elsevier, vol. 96(11), pages 1605-1614, November.
    2. De la Hera, M.L. & Romero, P. & Gomez-Plaza, E. & Martinez, A., 2007. "Is partial root-zone drying an effective irrigation technique to improve water use efficiency and fruit quality in field-grown wine grapes under semiarid conditions?," Agricultural Water Management, Elsevier, vol. 87(3), pages 261-274, February.
    3. Girona, J. & Mata, M. & Marsal, J., 2005. "Regulated deficit irrigation during the kernel-filling period and optimal irrigation rates in almond," Agricultural Water Management, Elsevier, vol. 75(2), pages 152-167, July.
    4. Abrisqueta, J.M. & Mounzer, O. & Álvarez, S. & Conejero, W. & Garci­a-Orellana, Y. & Tapia, L.M. & Vera, J. & Abrisqueta, I. & Ruiz-Sánchez, M.C., 2008. "Root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation," Agricultural Water Management, Elsevier, vol. 95(8), pages 959-967, August.
    5. Intrigliolo, D.S. & Castel, J.R., 2009. "Response of Vitis vinifera cv. 'Tempranillo' to partial rootzone drying in the field: Water relations, growth, yield and fruit and wine quality," Agricultural Water Management, Elsevier, vol. 96(2), pages 282-292, February.
    6. Nortes, P.A. & Perez-Pastor, A. & Egea, G. & Conejero, W. & Domingo, R., 2005. "Comparison of changes in stem diameter and water potential values for detecting water stress in young almond trees," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 296-307, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    2. Vivaldi, Gaetano Alessandro & Camposeo, Salvatore & Romero-Trigueros, Cristina & Pedrero, Francisco & Caponio, Gabriele & Lopriore, Giuseppe & Álvarez, Sara, 2021. "Physiological responses of almond trees under regulated deficit irrigation using saline and desalinated reclaimed water," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Puerto, P. & Domingo, R. & Torres, R. & Pérez-Pastor, A. & García-Riquelme, M., 2013. "Remote management of deficit irrigation in almond trees based on maximum daily trunk shrinkage. Water relations and yield," Agricultural Water Management, Elsevier, vol. 126(C), pages 33-45.
    4. Alcon, Francisco & Tapsuwan, Sorada & Brouwer, Roy & de Miguel, María Dolores, 2014. "A choice experiment of farmer’s acceptance and adoption of irrigation water supply management policies," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 183089, European Association of Agricultural Economists.
    5. Phogat, V. & Pitt, T. & Cox, J.W. & Šimůnek, J. & Skewes, M.A., 2018. "Soil water and salinity dynamics under sprinkler irrigated almond exposed to a varied salinity stress at different growth stages," Agricultural Water Management, Elsevier, vol. 201(C), pages 70-82.
    6. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    7. Guo, Youzheng & Ma, Yingjun & Ding, Changjun & Di, Nan & Liu, Yang & Tan, Jianbiao & Zhang, Shusen & Yu, Weichen & Gao, Guixi & Duan, Jie & Xi, Benye & Li, Ximeng, 2023. "Plant hydraulics provide guidance for irrigation management in mature polar plantation," Agricultural Water Management, Elsevier, vol. 275(C).
    8. Pérez-Pastor, A. & Ruiz-Sánchez, Mª C. & Domingo, R., 2014. "Effects of timing and intensity of deficit irrigation on vegetative and fruit growth of apricot trees," Agricultural Water Management, Elsevier, vol. 134(C), pages 110-118.
    9. Gutiérrez-Gordillo, S. & Durán-Zuazo, V.H. & García-Tejero, I., 2019. "Response of three almond cultivars subjected to different irrigation regimes in Guadalquivir river basin," Agricultural Water Management, Elsevier, vol. 222(C), pages 72-81.
    10. Zhen, Jingbo & Lazarovitch, Naftali & Tripler, Effi, 2020. "Effects of fruit load intensity and irrigation level on fruit quality, water productivity and net profits of date palms," Agricultural Water Management, Elsevier, vol. 241(C).
    11. Alcon, Francisco & Tapsuwan, Sorada & Martínez-Paz, José M. & Brouwer, Roy & de Miguel, María D., 2014. "Forecasting deficit irrigation adoption using a mixed stakeholder assessment methodology," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 183-193.
    12. Mirás-Avalos, José M. & Gonzalez-Dugo, Victoria & García-Tejero, Iván F. & López-Urrea, Ramón & Intrigliolo, Diego S. & Egea, Gregorio, 2023. "Quantitative analysis of almond yield response to irrigation regimes in Mediterranean Spain," Agricultural Water Management, Elsevier, vol. 279(C).
    13. José Manuel Mirás-Avalos & Pedro Marco & Sergio Sánchez & Beatriz Bielsa & María José Rubio Cabetas & Vicente González, 2022. "Soil Quality Index of Young and Differently Managed Almond Orchards under Mediterranean Conditions," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    14. Elias Marvinney & Jin Wook Ro & Alissa Kendall, 2020. "Trade-Offs in Net Life Cycle Energy Balance and Water Consumption in California Almond Orchards," Energies, MDPI, vol. 13(12), pages 1-16, June.
    15. López-López, Manuel & Espadafor, Mónica & Testi, Luca & Lorite, Ignacio Jesús & Orgaz, Francisco & Fereres, Elías, 2018. "Water use of irrigated almond trees when subjected to water deficits," Agricultural Water Management, Elsevier, vol. 195(C), pages 84-93.
    16. Song, Qilong & Zhang, Fangfang & Li, Xin & Yue, Shanchao & Luo, Zhuzhu & Li, Shiqing, 2024. "Understanding of maize root responses to changes in water status induced by plastic film mulching cultivation on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egea, Gregorio & González-Real, María M. & Baille, Alain & Nortes, Pedro A. & Sánchez-Bel, Paloma & Domingo, Rafael, 2009. "The effects of contrasted deficit irrigation strategies on the fruit growth and kernel quality of mature almond trees," Agricultural Water Management, Elsevier, vol. 96(11), pages 1605-1614, November.
    2. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    3. Reinhard NOLZ & Willibald LOISKANDL & Gerhard KAMMERER & Margarita L. HIMMELBAUER, 2016. "Survey of soil water distribution in a vineyard and implications for subsurface drip irrigation control," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(4), pages 250-258.
    4. Romero, Pascual & Muñoz, Rocío Gil & Fernández-Fernández, J.I. & del Amor, Francisco M. & Martínez-Cutillas, Adrián & García-García, José, 2015. "Improvement of yield and grape and wine composition in field-grown Monastrell grapevines by partial root zone irrigation, in comparison with regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 149(C), pages 55-73.
    5. Mirás-Avalos, José M. & Gonzalez-Dugo, Victoria & García-Tejero, Iván F. & López-Urrea, Ramón & Intrigliolo, Diego S. & Egea, Gregorio, 2023. "Quantitative analysis of almond yield response to irrigation regimes in Mediterranean Spain," Agricultural Water Management, Elsevier, vol. 279(C).
    6. Martín-Palomo, MJ & Andreu, L. & Pérez-López, D. & Centeno, A. & Galindo, A. & Moriana, A. & Corell, M., 2022. "Trunk growth rate frequencies as water stress indicator in almond trees," Agricultural Water Management, Elsevier, vol. 271(C).
    7. Silber, A. & Levi, M. & Cohen, M. & David, N. & Shtaynmetz, Y. & Assouline, S., 2007. "Response of Leucadendron `Safari Sunset' to regulated deficit irrigation: Effects of stress timing on growth and yield quality," Agricultural Water Management, Elsevier, vol. 87(2), pages 162-170, January.
    8. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    9. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    10. Gutiérrez-Gordillo, S. & Durán-Zuazo, V.H. & García-Tejero, I., 2019. "Response of three almond cultivars subjected to different irrigation regimes in Guadalquivir river basin," Agricultural Water Management, Elsevier, vol. 222(C), pages 72-81.
    11. Martín-Palomo, M.J. & Corell, M. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Pattern of trunk diameter fluctuations of almond trees in deficit irrigation scheduling during the first seasons," Agricultural Water Management, Elsevier, vol. 218(C), pages 115-123.
    12. Gao, Zhaoquan & Fan, Jiangchuan & Li, Zhiqiang, 2021. "Dynamic simulation water storage of different parts in peach tree under drought stress," Agricultural Water Management, Elsevier, vol. 244(C).
    13. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    14. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    15. Trigo-Córdoba, Emiliano & Bouzas-Cid, Yolanda & Orriols-Fernández, Ignacio & Mirás-Avalos, José Manuel, 2015. "Effects of deficit irrigation on the performance of grapevine (Vitis vinifera L.) cv. ‘Godello’ and ‘Treixadura’ in Ribeiro, NW Spain," Agricultural Water Management, Elsevier, vol. 161(C), pages 20-30.
    16. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    17. Abrisqueta, I. & Vera, J. & Tapia, L.M. & Abrisqueta, J.M. & Ruiz-Sánchez, M.C., 2012. "Soil water content criteria for peach trees water stress detection during the postharvest period," Agricultural Water Management, Elsevier, vol. 104(C), pages 62-67.
    18. Pérez-López, D. & Pérez-Rodríguez, J.M. & Moreno, M.M. & Prieto, M.H. & Ramírez-Santa-Pau, M. & Gijón, M.C. & Guerrero, J. & Moriana, A., 2013. "Influence of different cultivars–locations on maximum daily shrinkage indicators: Limits to the reference baseline approach," Agricultural Water Management, Elsevier, vol. 127(C), pages 31-39.
    19. Du, Taisheng & Kang, Shaozhong & Zhang, Jianhua & Li, Fusheng & Yan, Boyuan, 2008. "Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 95(6), pages 659-668, June.
    20. Gucci, Riccardo & Caruso, Giovanni & Gennai, Clizia & Esposto, Sonia & Urbani, Stefania & Servili, Maurizio, 2019. "Fruit growth, yield and oil quality changes induced by deficit irrigation at different stages of olive fruit development," Agricultural Water Management, Elsevier, vol. 212(C), pages 88-98.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:1:p:171-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.